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About this book♣ 
 
This book focusses on the explanation of the gravitational interactions and 
phenomena as they are described and understood in the framework of 
gravitoelectromagnetism (GEM).  GEM is a classical field theory, that is starting 
from the idea that the gravitational field must be isomorphic with the 
electromagnetic field in a vacuum.  It is an extension of Newtonian gravity 
because it takes into account, in addition to their position,  the kinematics of the 
gravitating objects.  In this book it is shown that GEM perfectly can be explained 
by the “theory of informatons”. 
The theory of informatons  develops the idea that any material object manifests 
itself in space by the emission - at a rate proportional to its rest mass - of 
informatons: mass and energy less granular entities rushing away with the speed 
of light and carrying information regarding the position and the velocity of their 
emitter.  This implies that any material object is at the center of an expanding 
cloud of informatons that can be identified as the gravitational field linked to that 
object.  
It is shown that the gravitational field is a dual entity always having a field- and 
an induction- component  simultaneously created by their common sources: time-
variable masses  and mass flows, that the Maxwell-Heaviside equations are the 
expressions at the macroscopic level of the kinematics of the informatons, that the 
gravitational interaction is the effect of the fact that an object in a gravitational 
field tends to become “blind” for that field by accelerating according to a Lorentz-
like law, and that an accelerated object is the source of gravitational radiation.   
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CHAPTER 1 
 

INTRODUCTION  
 
 
Daily contact with the things on hand confronts us with their substantiality.  An 
object is not just form, it is also matter.  It takes space, it eliminates emptiness.  
The amount of matter within the contours of a physical body is called its mass.  
The mass of an object manifests itself when it interacts with other objects.  A 
fundamental form of interaction is “gravitation”.  Material objects (“masses”) 
attract each other and, if they are free, they move to each other. 
 
In the framework of the classical theory of fields (“Newtonian gravity”), the 
gravitational interactions are described by introducing the field concept.  Each 
material object manifests its substantiality by creating and maintaining a vector 
field, characterized by the vectoral quantity ��⃗ � that has a value at every point of 
space and time and is thus -  relative to an inertial reference frame O - regarded 
as a function of space and time coordinates.  And each object in that field 
experiences a tendency to accelerate.  The field theory considers the gravitational 
field as the entity that mediates in the gravitational interactions. 
 
Newtonian gravity is further developed and extended by Oliver Heaviside[1]  and 
Oleg Jefimenko[2].  Their work results in the theory of gravitoelectromagnetism 
(GEM).  In GEM the description of the gravitational field is starting from the idea 
that it must be isomorphic with the electromagnetic one. This implies that the 
gravitational field must be characterized by two vectoral quantities ��⃗ � - the 

gravitational field or the g-field - and ��⃗ � – the gravitational induction or the g-

induction - that are analogue to respectively  the electric field ��⃗  and the magnetic 
induction ��⃗ .  The gravitational induction ��⃗ � is representative for the kinematics 
of the gravitating objects, a phenomenon that was not taken into account in  
Newtonian gravity.  The starting point of GEM also implies that the relations 
between ��⃗ � and ��⃗ �  (the GEM equations or the Maxwell-Heaviside equations)  
must be analogue to Maxwell’s laws. Neither these equations nor their solutions 
indicate an existence of causal links between ��⃗ � and ��⃗ �. Therefore, in the 
framework of GEM it must be concluded that a gravitational field is a dual entity 
always having a “field-” and an “induction-” component  simultaneously created 
by their common sources: time-variable masses  and mass flows. 
   
Although GEM  describes the gravitational phenomena in a correct and coherent 
manner,  it doesn’t create clarity about  the physical nature of gravity: the 
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gravitational field is considered as a purely mathematical construction.  In what 
follows we develop the idea that, if masses can influence each other “at a 
distance”,  they must in one way or another exchange data.  We assume that each 
mass emits information relative to its magnitude and its position, and that it is able 
to “interpret” the information emitted by its neighbours.  In this way we propose 
a physical foundation of GEM by introducing information as the substance of a 
gravitational field[3],[4],[5],[6] . 
  
We start from the idea that a material object manifests itself in space by the 
emission - at a rate proportional to its rest mass - of mass and energy less granular 
entities that, relative to an inertial reference frame, are rushing away with the 
speed of light and are carrying information regarding the position (“g-
information”) and regarding the velocity (“�-information”) of their emitter.  
Because they transport nothing than information, we call these entities 
“ informatons”.  The gravitational field of a material object will then be understood 
as an expanding cloud of informatons, that forms an indivisible whole with that 
object.  
 
In the postulate of the emission of informatons, we define an informaton by its 
attributes and determine the rules that govern the emission by a point mass that is 
anchored in an inertial reference frame O.   
 
The first consequence of that postulate is that a point mass at rest in O - and by 
extension any material object at rest -  is the source of an expanding cloud of 
informatons,  that - at an arbitrary point P - is characterised by the density of the 
flow of g-information at that point.  That vectoral quantity can be identified with ��⃗�, the gravitational field strength, and the cloud of informatons with the 
gravitational field in O.   
 
A second consequence is that the informatons emitted by a point mass that is 
moving relative to O, constitute a gravitational field in O that is characterised by 
two vectoral quantities:  ��⃗�, the density of the g-information flow and ��⃗ �, the 
density of the �-information cloud.  We will show that the relations between these 
two quantities (the laws of GEM) - the macroscopic expressions of the kinematics 
of the informatons - are the gravitational analogues of Maxwell’s electromagnetic 
laws.   
 
Next we explain the gravitational interaction between masses as the response of 
an object to the disturbance of the symmetry of its “proper” gravitational field  by 
the field that, in its direct vicinity, is created and maintained by other masses.  And 
finally we examine the emission of energy by an accelerating mass. 
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The starting point of GEM and of the theory of informatons differs fundamentally 
from the starting point of GRT, because space and time don’t play an active role 
neither in the description of gravity by GEM nor in the explanation of the 
gravitational phenomena and laws by the theory of informatons.  In those contexts 
space and time  are elements of the description of nature that do not participate in 
the physical processes.  We still mention that  GEM has been discussed within the 
framework of GRT by a number of authors[7],[8].  They came to the conclusion that 
the gravitational analogues to Maxwell’s equations (the GEM equations) are valid 
in the weak field approximation. 
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 CHAPTER 2 
 

THE POSTULATE OF THE EMISSION OF 
INFORMATONS 

 
 

The “theory of informatons” explains the gravitational (and the electromagnetic) 
interactions and phenomena by the hypothesis that “information” is the substance 
of gravitational (and of electromagnetic) fields. 
 
The constituent element of that substance is called an “informaton”.  The theory 
starts from the idea that any material object manifests itself in space by the 
continuous emission - at a rate proportional to its rest mass - of informatons:  
granular mass and energy less entities rushing away with the speed of light and 
carrying information about the position (“g-information”) and about the velocity 
(“�-information”) of their emitter. 
 
In this chapter the mechanism of the emission of informatons by a point mass at 
rest will be described, and the informaton will be defined by its attributes. 
 
 
2.1 PRELIMINARY DEFINITIONS 
 
A material body occupies space,  its surface encloses matter.  The amount of 
matter within its contours  is called its mass.  According to the field theory, any 
material body is the source of a gravitational field that at a sufficiently large 
distance is independent of the form of the body. This “far field” can be calculated 
by reducing the body to a mathematical point in which all the mass is 
accumulated.   Such a point is called a “particle” or a “point mass” and it will be 
graphically represented by a little sphere.  If we can calculate the gravitational 
field generated by a point mass, integral calculus delivers the methods to calculate 
the gravitational field generated by any material body.  This justifies the fact that 
we in the first instance  focus on the emission of informatons by a point mass. 
 
The phenomena that are the subject of this book are situated in spacetime:  they 
are located in “space” and dated in “time”.  
  
       1. In the context of the theory of informatons space is conceived as a three-
dimensional, homogeneous, isotropic, unlimited and empty continuum.  This 
continuum is called the “Euclidean space” because that what there geometrically 
is possible is determined by the Euclidean geometry.  By anchoring a standardized 
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Cartesian coordinate system to a reference body, an observer can - relative to that 
reference body - localize each point by three coordinates x, y, z.  
   
       2. In the same context we define time as the monotonically increasing real 
quantity t that is generated by a standard clock•.  In a Cartesian coordinate system 
a standard clock links to each event a  “moment” - this is a specific value of t - 
and to each duration a “period” or “time interval” - this is a specific increase of t.  
The introduction of time makes it possible for the observer to express, in an 
objective manner, the chronological order of events in a Cartesian coordinate 
system. 
 
A Cartesian coordinate system together with a standard clock is called a 
“ reference frame”.  We represent a reference frame as OXYZ(T) or shortly  as O.  
A reference frame is called an “inertial reference frame” if light propagates 
rectilinear (in the sense of the Euclidean geometry) with constant speed 
everywhere in the empty space linked to that frame.  This definition implies that 
the space linked to an inertial reference frame is an homogeneous, isotropic, 
unlimited and empty continuum in which the Euclidean geometry is valid.  A 
reference frame O’ moving relative to an inertial reference frame O is itself also 
an inertial reference frame.  The coordinates of an event linked to the inertial 
frames O and O’ are related by the Lorentz transformation. 
 
2.2  THE CONCEPT OF GRAVITATIONAL INFORMATION  
 
Newton’s law of universal gravitation[1] may be expressed as follows: 
       
The force between any two particles having masses m1 and m2 separated by a 
distance r is an attraction working along the line joining the particles and has a 
magnitude � = �. ��. ��	�  

where G is a universal constant having the same value for all pairs of particles. 
 
This law expresses the basic fact of gravitation, namely that two masses are 
interacting “at-a-distance”: they exert forces on one another even though they are 
not in contact.  
        
According to Newton’s law �⃗�, the force exerted by a particle A - with mass m1 - 
on a particle B - with mass m - is pointing to the position of A and has a magnitude: 
 

 
•  The operation of a standard clock is based on the counting of the successive cycles of a 
periodic process that is generated by a device inside the clock. 
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�� = ��. ��	� � . � 

 
The orientation of this force and the fact that it is directly proportional to the mass 
of A and inversely proportional to the square of the distance from A to B, implies 
that particle B must receive information about the presence in space of particle A: 
particle A must send information to B about its position and about its mass.  This  
conclusion is independent of the position and the mass of B;  so we can generalize 
it and posit that 
  
A particle manifests itself in space by emitting information about its mass and 
about its position. 
 
We consider that type of information as a substantial element of nature and call it  
“gravitational information” or “g-information” .  We assume that g-information is 
transported by mass and energy less granular entities that rush through space with 
the speed of light (c).  These grains of g-information are called informatons.   
 
2.3  THE POSTULATE OF THE EMISSION OF INFORMATONS 
   
A material object manifests its presence in space by continuously emitting 
informatons.  The emission of informatons by a material object anchored in an 
inertial reference frame O, is governed by the “postulate of the emission of 
informatons”. 
 
A.  The emission  of informatons by a particle at rest is governed by the following 
rules: 
 
       1. The emission is uniform in all directions of space, and the informatons 
diverge with the speed of light (c =  3.108 m/s) along radial trajectories relative 
to the position of the emitter. 
 

       2. �� = � �� ,  the rate at which a particle emits informatons•, is time 

independent and proportional to the rest mass m0  of the emitter.  So there is a 
constant  K so that:                  �� = !. �" 
 
       3. The constant K is equal to the ratio of the square of the speed  of light (c) 
to the Planck  constant (h): 

 
• We neglect the possible stochastic nature of the emission, that is  responsible for noise on the 
quantities that characterize the gravitational field. So, �.

 is the average emission rate. 
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! = #�ℎ = 1,36.10)"*+,�. -,� 

 
B.  We call the essential attribute of an informaton its g-index. The g-index of an 
informaton refers to information about the position of its emitter and equals the 
elementary quantity of g-information.  It is represented by a vectoral quantity -⃗�:  
 
       1. -⃗�  points to the position of the emitter. 

 
       2.  The elementary quantity of g-information is: 
   -� = 1!. ." = 6,18.10,0"�1. -,� 

 
where ." = �2.3.4 = 1,19.106*+. -�. �,1,  G being the gravitational constant. 

 
Rule A.1 is the  expression of the hypothesis that the space is an homogenous and 
isotropic continuum in which the gravitational phenomena are travelling with the 
speed of light.  Rule A.2  posits that the rate at which a particle emits informatons 
is a measure for its rest mass and rule A.3 implies the fact that, when a particle 
absorbs (emits) a photon ℎ. 7, its rest mass is increasing (decreasing) with an 

amount 
ℎ.89:  while its emission rate is increasing (decreasing) with an amount 7.  

Rule B.1 and rule B.2 respectively  express the facts that the gravitational field of 
a particle always points to the position of the source of that field and that the 
gravitational force between any two particles depends on a universal constant G. 
 
To summarize,  each material object manifests itself in space by the emission of 
informatons, it is a source informatons.  Informatons  are grains of g-information 
and, as such, the constituent elements of gravitational fields.  In the context of the 
postulate of the emission of informatons they are completely defined by their g-
index -⃗�.  We will represent an informaton as a quasi-infinitely small spinning 
sphere, moving with velocity #⃗ and carrying a vector -⃗�. 
 
In what follows we will show that informatons macroscopically manifest 
themselves in ��⃗� and ��⃗ �, the vectoral quantities  that mathematically characterize 
gravitational fields;  and in the laws of GEM that are manifestations of their 
kinematics.  We will also show that informatons emitted by an accelerated point 
mass can be carriers of a quantum of energy.  The combination of an informaton 
with  a packet of energy appears to the observer as a “graviton”. 
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It also is possible to explain electromagnetism by the theory of informatons[2],[3].  
In that context they macroscopically manifest themselves as ��⃗  and ��⃗  , the vectoral 
quantities that characterize an EM field, and in Maxwell’s laws that are 
manifestations of their kinematics.  In the context of EM  a “photon” can be 
interpreted as a combination of an information (the carrier) and a quantum of 
energy. 
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CHAPTER 3 
 

THE GRAVITATIONAL FIELD OF AN OBJECT AT 
REST 

 
 
In what follows we will show that the emission of informatons by an object at rest 
macroscopically manifests itself in the gravitational field of that object.  The 
substance of that gravitational field is g-information.  The gravitational field of an 
object at rest is completely characterized by a vectoral quantity ��⃗�, called the g-

field.  ��⃗� has a value at every point of space and is thus -  relative to an inertial 
reference frame O - regarded as a function of the space coordinates.  At a certain 
point P, ��⃗� is the density of the g-information flow passing near P.  The relation 

between ��⃗� and the rest mass of its source (i.e. the first equation of Maxwell-
Heaviside) is the expression of the law of conservation of g-information. 
 
 
3.1  THE GRAVITATIONAL FIELD OF A PARTICLE AT REST  
 
In fig 1 we consider a particle or “point mass” with rest mass m0  that is anchored 
at the origin of an inertial reference frame O.  According to the postulate it 
continuously emits informatons in all directions of space.  
    
                                                                               

                                                 Z 

                                                                                 #⃗ 

                                                                                                                                                           

                                                                     -⃗�       P      

                                                                                       	⃗                                                       

                                                          

                                                               

                          

                                                           m0                                              Y 
                                                                    O 
                                               X 

Fig 1 
 

The informatons that with velocity 
   

#⃗ = #. 	⃗	 = #. ;⃗< 
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pass near a fixed point P - defined by the position vector 	⃗ - are characterised by 

their g-index -⃗�: 

-⃗� = − 1!. ." . 	⃗	 = − 1!. ." . ;⃗< 

 
The rate at which the point mass emits g-information is the product of the rate at 
which it emits informatons with the elementary g-information quantity:  
 �� . -� = �"."  

 
Of course, this is also the rate at which it sends g-information through any closed 
surface that surrounds m0:  it is the intensity of the g-information-flow  through 
any closed surface that encloses m0.    
                                       
The emission of informatons fills the space around m0 with an expanding cloud 
of g-information.  This cloud has the shape of a sphere whose surface moves away  
with the speed of light from the centre O, the position of the point mass. 
 
       1. Within that cloud there  is a stationary state.  Because for each spatial 
region, the inflow of g-information equals the outflow, each spatial region 
contains an unchanging number of informatons and thus a constant quantity of g-
information.  Moreover, the orientation of the g-indices of the informatons passing 
near a fixed point is always the same. 
 
       2. That cloud can be identified with a continuum.  Each spatial region  
contains a very large number of informatons: the g-information is like 
continuously spread over the volume  of the region. 
 
The cloud of g-information surrounding O can be identified as the gravitational 
field or the g-field of the point mass m0. 
        
Without interruption “countless”  informatons are rushing through any - even a 
very small - surface in the gravitational field: we can describe the motion of g-
information through a surface  as a continuous flow of g-information. 
    
We know already that the intensity of the flow of g-information through a closed 
surface that surrounds O is expressed as: 
 �� . -� = �"."  
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If the closed surface is a sphere with radius r, the intensity of the flow per unit 
area is given by: �"4. ?. 	�. ." 

 
This is the density of the flow of g-information at each point P at a distance  r  
from  m0  (fig 1).  This quantity is, together with the orientation of the g-indices 
of the informatons that are passing near P, characteristic  for the gravitational field 
at that point. Thus, at a point P, the gravitational field of the point mass m0 is 
unambiguously  defined by the vectoral quantity ��⃗� : 
 

��⃗� = ��4. ?. 	� . -⃗� = − �"4. ?. .". 	� . ;⃗< = − �"4. ?. .". 	1 . 	⃗ 

 
        

This quantity is the gravitational field strength or the g-field strength or the g-
field.  In any point of the gravitational field of the point mass m0, the orientation 
of ��⃗� corresponds to the orientation of the g-indices of the informatons which are 

passing near that point.  And the magnitude of ��⃗� is the density of the g-

information flow at that point.  Let us note that ��⃗� is opposite to the sense of 
movement of the informatons. 
 
Finally, let us consider a surface-element dS at P (fig 2,a).  Its orientation and 

magnitude are completely determined by the surface-vector �@AB
  (fig 2,b).  By −�C4, we represent  the rate at which g-information flows through dS in the sense 

of the positive normal ;⃗D and we call the scalar quantity �C4 the elementary g-
flux through dS:  
 �C4 = ��⃗�. �@AB = ��. �@. #
- E 

 
 

                                                                                                                            

                                                    ;⃗D                                                                                     �@AB = �@. ;⃗D                                                    

                                                                                                 

            

                                                                        =                                              E          P    

                   ��⃗�                                                                                ��⃗� 

                            
                           Fig 2,a                                                   Fig 2,b 
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For an arbitrary closed surface S that surrounds m0, the outward flux (which we 
obtain by integrating the elementary contributions �C�over S) must be equal to 
the rate at which the mass emits g-information.  Thus: 
 C4 = F ��⃗� . �@AB = − �"."  

 
This relation  is the  expression of  the conservation of g-information  in the case 
of a point mass at rest. 
 
3.2  THE GRAVITATIONAL FIELD OF A SET OF PARTICLES AT REST 
 
We consider a set of particles with rest masses m1,…,mi,…mn   that  are anchored 
in an inertial reference frame O.  At an arbitrary point P, the flows of g-
information who are emitted by the distinct masses are defined by the 
gravitational fields ��⃗��, . . . , ��⃗�G , . . . , ��⃗�D . −�C�, the rate at which g-information 
flows through a surface-element dS at P  in the sense of the positive normal, is the 
sum of the contributions of the distinct masses: 
 

−�C4 = H −(��⃗�G
D

GJ� . �@AB) = −(H ��⃗�G
D

GJ� ). �@AB = −��⃗�. �@AB
 

 
So, the effective density of the flow of g-information at P (the effective  g-field ) 
is completely defined by: 

��⃗� = H ��⃗�G
D

GJ�  

 
We conclude:  
 
At a point of space, the g-field of a set of point masses at rest is completely defined 
by the vectoral sum of the g-fields caused  by the distinct masses.   
 
Let us remark that the orientation of the effective g-field has no longer a relation 
with the direction in which the passing informatons are moving. 
 
One easily shows that the outward g-flux through a closed surface in the g-field 
of a set of anchored point masses only depends on the surrounded masses min: 
 − F ��⃗� . �@AB = �GD."  
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This relation is the expression of  the conservation of g-information in the case of 
a set of point masses at rest.  
 
3.3  THE GRAVITATIONAL FIELD OF A MASS CONTINUUM AT  REST 
 
We call an object in which the matter in a time independent manner is spread over 
the occupied volume, a mass continuum.  At each point Q of such a continuum, 
the accumulation of mass is defined by the (mass) density L4.  To define this scalar 
quantity one considers the mass dm of a volume element dV that contains Q.  The 
accumulation of mass in the vicinity of Q is defined by: 
 L4 = ���M  

 
A mass continuum - anchored in an inertial reference frame - is equivalent to a set 
of infinitely many infinitesimal small mass elements dm.  The contribution of each 
of them to the field strength at an arbitrary point P is ���⃗�.  ��⃗�, the effective g-
field at P, is the result of the integration over the volume of the continuum of all 
these contributions. 
 
It is evident that the outward g-flux through a closed surface S only depends on 
the mass enclosed by that surface (the enclosed volume is M): 
 − F��⃗�N . �@AB = 1." . O L4 . �MP  

 
That relation is equivalent with (theorem of Ostrogradsky[2]):  
 �����⃗� = − L4."  

 
This is the expression of the conservation of g-information  in the case of a mass 
continuum at rest.   
 
Furthermore, one can show that[2],[3] 	
���⃗� = 0, what implies the existence of a 
gravitational potential function M� for which: 
  ��⃗� = −+	Q�M� 
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3.4  CONCLUSION 
 
The gravitational field of a particle at rest forms an indivisible whole with that 
particle.  It is completely characterized by the physical quantity “gravitational 
field” or “g-field”.  This quantity is represented by the position dependent vector ��⃗�, the density of the flow of g-information at an arbitrary point P. 
 
The substance of the gravitational field is “g-information” and its constituent 
element is the “informaton”.  This implies that the gravitational field is granular, 
that it continuously regenerates, that it shows fluctuations, that it expands with the 
speed of light, that gravitational phenomena propagate with that speed and that 
there is conservation of g-information at every point of the gravitational field. 
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CHAPTER 4 
 

THE GRAVITATIONAL FIELD OF AN OBJECT 
MOVING WITH CONSTANT VELOCITY 

 
 

To characterize the gravitational field of a moving object we need a vector field 
with two components:  the g-field ��⃗ � and the g-induction ��⃗ � that respectively 
define the density of the flow of g-information and the density of the cloud of β-
information at every point of space and time.  We show that the gravitational field 
of an object moving with constant velocity is governed by the Maxwell-Heaviside 
equations and that these equations in no way lead to the conclusion that there are 
causal relations between the changes in time and the spatial variations of  ��⃗ � and ��⃗ �. The gravitational field is a dual entity having a field and an induction 
component. 
 
4.1 THE g-FIELD OF A PARTICLE MOVING WITH CONSTANT 
VELOCITY  
 

 
         Z=Z’                                                                   Z’ 

                    

                                                              P                                                                                                                                                                             

                        �⃗      R         	⃗                                                                            P                               

                                                ��⃗ �                                                   R′    	⃗′                                                                        

              P1=O’                                              Y’                                          ��⃗ �′                        

 

                                                                                           O’                                          Y’                                    

    X’ 

                       O                                               Y         X’ 

                                                                                                               (b) 

                                                                                                              

     X                             (a)                                                                        

                           
                          Fig 3 
 

In fig 3,a, we consider a particle with rest mass m0  that is moving with constant 
velocity �⃗ = �. ;⃗T  along the Z-axis of an IRF  O.  At the moment  t = 0,  it passes 
through the origin O and at the moment t = t  through the point P1.  It is evident 
that: UV� = WXY = �. � 
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P is an arbitrary fixed point in O with space coordinates (x, y, z).  .  Its position 
relative to the moving particle is determined by the time dependent position vector 	⃑ = V�VA⎯B

. 
 
The g-field at P is the vectoral quantity ��⃗� that at that point characterizes the 

density of the flow of g-information. The magnitude of ��⃗�  is the rate per unit area 
at which g-information at P flows through  an elementary surface perpendicular 
to the direction of ��⃗�. 
  
We introduce the IRF O’ (fig 3,a) whose origin is anchored to the moving particle 
and we assume that  t = t’  = 0  when it  passes through O.   
 
Relative to O’ where the particle is at rest at the origin O’ (fig 3,b), the position 

of the point P is determined by the time dependent position vector   	⃑′ = U′VA⎯B
  so 

that  in O’  the space coordinates of P are  (x’, y’, z’).   
 
Because the particle is at rest in O’,  ��⃗�]  -  the density of the g-information flow at 
P relative to O’ is – according to §3.1 defined by the vectoral quantity:  
 �′���⃗ � = − �"4. ?. .". 	′� . ;⃗<] = − �"4?."	′1 . 	′→

 

 
The components of ��⃗�]  in O’, are: ��_]] = − �"4?."	′1 . `′ 

                   ��a]] = − �"4?."	′1 . b]                  
 ��T]] = − �"4?."	′1 . W′ 
 

They determine at P the densities of the flows of g-information respectively 
through a surface element dy’.dz’ perpendicular to the X’-axis, through a surface 
element dz’.dx’ perpendicular to the Y’-axis and through a surface element dx’.dy’ 
perpendicular to the Z’-axis. Thus, the rates at which g-information is flowing 
through these different surface elements (the g-fluxes) at P are: 
 

��_]] . �b′. �W′ = − �". `′4?."	′1 . �b′. �W′ 
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��a]] . �W′. �`′ = − �". b′4?."	′1 . �W′. �`′  
��T]] . �`′. �b′ = − �". W′4?."	′1 . �`′. �b′ 

 
Informatons propagate at the speed of light that - in  free space - has the same 
value in all inertial reference  frames.  That implies that the rate at which g-
information flows through a surface element dS in O can be derived from the rate 
at which it flows through a surface element dS’ in O’ by applicating the Lorenz 
transformation equations.   

 
• The Cartesian coordinates of P in the frames O and O’ are related to each 

other by[1]: 

x’ = x               y’ =y               W′ = T,c.�d�,e: = T,TfYd�,e: 

 

• The line elements by:     dx’ =dx         dy’=dy          �W′ = �Td�,e: 

•  And further:   

	′ = 	. d1 − ��. -�g� Rd1 − ��  

 
So relative to O, the rates at which the moving particle sends g-information  in 
the positive direction  through the surface elements dy.dz, dz.dx  and dx.dy  at P 
are: 

 

− �"4?."	1 . 1 − ��
(1 − ��. -�g� R)1� . `. �b. �W 

− �"4?."	1 . 1 − ��
(1 − ��. -�g� R)1� . b. �`. �W     

 
            − �"4?."	1 . 1 − ��

(1 − ��. -�g� R)1� . hW − WXYi. �`. �W 

 
By definition,  the densities at P of the flows of g-information in the direction of 
the X-, the Y- and the Z-axis are the components of the g-field caused by the 
moving particle m0 at P in O.  So: 
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��_ = − �"4?."	1 . 1 − ��
(1 − ��. -�g� R)1� . ` 

 
��a = − �"4?."	1 . 1 − ��

(1 − ��. -�g� R)1� . b 

 
             ��T = − �"4?."	1 . 1 − ��

(1 − ��. -�g� R)1� . (W − WXY) 

 
 
From which it follows that the g-field caused by the particle at the fixed point P 
is: 
 

��⃗� = − �"4?."	1 . 1 − ��
(1 − ��. -�g� R)1� . 	⃗ = − �"4?."	� . 1 − ��

(1 − ��. -�g� R)1� . ;⃗< 

 
We conclude: 
 

 A particle describing a uniform rectilinear movement relative to an 
inertial reference frame O, creates in the space linked to that frame a time 
dependent gravitational field.  ��⃗�, the g-field at an arbitrary point P, points 
at any time to the position of the mass at that moment• and its magnitude 
is: 

�� = �"4?."	� . 1 − ��
(1 − ��. -�g� R)1�                        (1) 

 
 

In §3.1 we concluded that for an arbitrary closed surface S that surrounds m0, a 
particle at rest relative to an IRF O,  the outward flux  must be equal to the rate at 
which the mass emits g-information.  Thus: 
 C4 = F ��⃗� . �@AB = − �"."  

 

 
• The orientation of the g-field implies that the g-indices of the informatons that at a certain 
moment pass near P, point to the position of the emitting mass at that moment and not to its 
light delayed position. 
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This relation, the expression of conservation of g-information, applies also 
in the case of a particle m0 moving with constant velocity relative to O.  
 

Indeed,  the relation applies in the proper IRF O’ of m0 (the IRF anchored to m0) 
and because informatons (the carriers of g-information) travel with the same speed 
in all inertial reference frames, the rate at which  g-information flows through a 
surface element dS doesn’t depend on the IRF relative to which dS is described. 
 
If the speed of the mass is much smaller than the speed of light, the expression (1) 
reduces to that valid in the case of a mass at rest.  This non-relativistic result could 
directly be obtained if one assumes that the displacement of the point mass during 
the time interval that the informatons need to move from the emitter to P can be 
neglected compared to the distance they travel during that period. 
 
4.2  THE EMISSION OF INFORMATONS BY A PARTICLE MOVI NG 
WITH CONSTANT VELOCITY 
 
In fig 4 we consider a particle with rest mass m0  that is moving with constant 
velocity �⃗ along the Z-axis of an inertial reference frame O.  Its instantaneous 
position (at the arbitrary moment t)  is  P1.  The position of P, an arbitrary fixed 

point in space, is defined by the vector 	⃗ = V�VA⎯B
.  This position vector 	⃗ - just like 

the distance r and the angle R - is time dependent because the position of P1 is 
constantly changing. 
 
The informatons that - with the speed of light -  at the moment t are passing near  
P, are emitted when m0 was at P0.  Bridging the distance V"V = 	" took the time 

interval  j� = <k9 . 
 
                                                                                                                    #⃗ 

                                                    Z                                                                 jR 

                                                                                                               

                                                                                                                P 

                                                    �⃗                              -⃗�                                          

                                                                R             	⃗ 

                                                                                   

                                                  P1                             	⃗"                            

                                                          m0     
                                                                            

                                                                   R"     

 
 

                                                        P0 
Fig 4 
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During their rush from P0  to  P  their emitter, the particle, moved from P0 to P1:   V"V� = �. j� 
 
       1.  #⃗, the velocity of the informatons,  points in the direction of their 
movement, thus along the radius P0P; 
 
       2.  -⃗�, their g-index, points to P1, the position of m0 at the moment t.  This  is 
an implication of rule B.1 of the postulate of the emission of informatons, 
confirmed by the conclusion of §4.2.   
 
The lines carrying  -⃗� and #⃗ form an angle jR.  We call this angle - that is 
characteristic for the speed of the point mass - the “characteristic angle” or the 
“characteristic deviation”.  The quantity -e = -�. -�g( jR), referring to the speed 
of its emitter, is called the “characteristic g-information”  or the “� -information” 
of an informaton.  
 
We conclude that an informaton emitted by a moving particle, transports 
information referring to the velocity of that particle.  This information is 
represented by its “gravitational characteristic vector” or its  “� -index”  -⃗e that 
is defined by: 

-⃗e = #⃗ × -⃗�#  
 
       - The β-index is perpendicular to the plane formed by the path of the 
          informaton and the straight line that carries the g-index, thus it is  
          perpendicular to the plane formed by the point  P and the path of the 
          emitter.   
 
       -  Its orientation relative to that plane is defined by the “rule of the 
          corkscrew”. 
 
       -  Its magnitude is: so = sp. sin( Δθ),  the β -information of the 
          informaton. 
 
In the case of fig 4 the β-indices have the orientation of the positive X-axis.  
   
  
Applying the sine-rule to the triangle P0P1P, we obtain: 
 
   -�g( jR)�. j� = -�g R#. j�  
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From which it follows:        -e = -�. �# . -�g R = -�. �. -�g R = -�. �u 

 �u is the component of the dimensionless velocity  �⃗ = c�⃗9 perpendicular to -⃗� 

 
Taking into account the orientation of the different vectors, the β-index of an 
informaton emitted by a point mass moving with constant velocity, can also be 
expressed as: 
 

-⃗e = �⃗ × -⃗�#  

 
 

4.3 THE GRAVITIONAL INDUCTION OF A PARTICLE MOVING 
WITH CONSTANT VELOCITY 
 
We consider again the situation of fig 3.  All informatons in dV - the volume 
element at P - carry both g-information and β-information.  The β-information 
refers to the velocity of the emitting mass and is represented by the β-indices -⃗e:  
 

-⃗e = #⃗ × -⃗�# = �⃗ × -⃗�#  
 
If n is the density at P of the cloud of informatons (number of informatons per 
unit volume) at the moment t, the amount of β-information in dV is determined 
by the magnitude of the vector: 
 

g. -⃗e . �M = g. #⃗ × -⃗�# . �M = g. �⃗ × -⃗�# . �M
 

 
And the density of the β-information (characteristic information per unit volume) 
at P is determined by:  
 

g. -⃗e = g. #⃗ × -⃗�# = g. �⃗ × -⃗�#  

 
We call this (time dependent) vectoral quantity - that will be represented by ��⃗ � - 
the “gravitational induction”  or the “g-induction” at P•: 
 

 
• also called “gravitomagnetic induction” 
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       -  Its magnitude �� determines the density of the β-information at P; 
 
       - Its orientation determines the orientation of the β-indices -⃗e of the 
         informatons passing  near that  point. 
 
So, the g-induction caused by the moving mass m0  (fig 3) at  P  is:  
 

��⃗ � = g. �⃗ × -⃗�# = �⃗# × (g. -⃗�) 

 
N - the density of the flow of informatons at P (the rate per unit area at which the 
informatons  cross an elementary surface perpendicular to the direction of 
movement) - and n - the density of the cloud of informatons at P (number of 
informatons per unit volume) - are connected by the relation: 
  g = �#  

 
With    ��⃗� = �. -⃗�,  we can express the gravitational induction at P as:  
 

��⃗ � = �⃗#� × (�. -⃗�) = �⃗ × ��⃗�#�  

 
Taking the result of §4.2 into account, namely: 
  

��⃗� = − �"4?."	1 . 1 − ��
(1 − ��. -�g� R)1� . 	⃗ 

 
We find:  
            

��⃗ � = − �"4?."#�. 	1 . 1 − ��
(1 − ��. -�g� R)1� . (�⃗ × 	⃗) 

 
 

 
We define the constant  7" = 9,34.10-27

  m.kg-1   as:   7" = 1#�. ." 

 
And finally, we obtain: 
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��⃗ � = 7". �"4?	1 . 1 − ��
(1 − ��. -�g� R)1� . (	⃗ × �⃗) 

 ��⃗ � at P is perpendicular to the plane formed by P and the path of the point mass; 
its orientation is defined by the rule of the corkscrew; and its magnitude is:   
  

�� = 7". �"4?	� . 1 − ��
(1 − ��. -�g� R)1� . �. -�g R 

 
If the speed of the mass is much smaller than the speed of light, the expression for 
the gravitational induction reduces itself  to:  

 ��⃗ � = 7". �"4?	1 . (	⃗ × �⃗) 

 
This non-relativistic result could directly be obtained if one assumes that the 
displacement of the point mass during the time interval that the informatons need 
to move from the emitter to P can be neglected compared to the distance they 
travel during that period. This means that for situations where � ≪ #, in the 
previous calculation the formula 
 ��⃗� = − �"4. ?. .". 	1 . 	⃗ 

 
can be used to express the g-field. 

 
So if  � ≪ # ,  ��⃗ �  at P is perpendicular to the plane formed by P and the path of 
the point mass; its orientation is defined by the rule of the corkscrew; and its 
magnitude is:      �� = 7". �"4?	� . �. -�g R 

 
4.4 THE GRAVITATIONAL FIELD OF A PARTICLE MOVING WI TH 
CONSTANT VELOCITY  

 

A particle m0, moving with constant velocity zevv
wr
.=  along the Z-axis of an 

inertial reference frame, creates and maintains an expanding cloud of informatons 
that are carrying both g- and β-information.  That cloud can be identified with a 
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time dependent continuum.  That continuum is called the gravitational field• of 
the point mass.  It is characterized by two time dependent vectoral quantities: the 
gravitational field (short: g-field) ��⃗� and the gravitational induction (short: g-

induction) ��⃗ �. 
 
       1.  With N the density of the flow of informatons at P (the rate per unit area 
at which the informatons  cross an elementary surface perpendicular to the 
direction of movement), the g-field at that point is: 
 

��⃗� = �. -⃗� = − �"4?."	1 . 1 − ��
(1 − ��. -�g� R)1� . 	⃗ 

 
The orientation of ��⃗� learns that  the direction of the flow of g-information at P is 
not the same as  the direction of the flow of informatons. 
 
       2.  With n, the density of the cloud of informatons at P (number of 
informatons per unit volume), the g-induction at that point is: 
 

��⃗ � = g. -⃗e = 7". �"4?	1 . 1 − ��
(1 − ��. -�g� R)1� . (	⃗ × �⃗) 

 
One can verify (Appendix A) that: 
 
                           1.  �����⃗� = 0                          2.  �����⃗ � = 0                                              
                                                                                                                           
        

                               3.  	
���⃗� = − x��⃗ �x�                  4.  	
���⃗ � = 1#� . x��⃗�x�                             
 
These relations are the laws of GEM (Maxwell-Heaviside) in the case of the 

gravitational field of a particle describing a uniform rectilinear motion.  It is 
important to notice that (3) and (4) express how the respective changes in space 
and time are linked to each other, and that  (3) and (4)  don’t express causal 
relationships.   The gravitational field is a dual entity having a field and an 
induction component. 

 

 
• Also called: “gravito-electromagnetic” (GEM field) or “gravito-magnetic” field (GM field) 
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If  � << #,  the expressions for the g-field and the g-induction reduce to: 
 ��⃗� = − �"4?."	1 . 	⃗                                ��⃗ � = 7". �"4?	1 . (	⃗ × �⃗)    
           
4.5  THE GRAVITATIONAL FIELD OF A SET OF PARTICLES 
MOVING WITH CONSTANT VELOCITIES 
 
We consider a set of particles m1,…,mi,…mn  that move with constant velocities �⃗�, … , �⃗G , … , �⃗D  relative to an inertial reference frame O.  This set creates and 
maintains a gravitational field that at each point of the space linked to O, is 

characterised by the vector pair (��⃗�, ��⃗ �). 
 
       1.  Each mass mi continuously emits  g-information  and contributes with an 

amount ��⃗�G to the  g-field at an arbitrary point P.  As in §3.2 we conclude that the 

effective g-field ��⃗�  at  P  is   defined as:
 ��⃗� = H ��⃗�G 

 
       2.  If it is moving, each mass mi emits also β-information, contributing to the 

g- induction at P  with an amount ��⃗ �G.  It is evident that the β–information  in the 

volume element dV at P at each moment t is expressed by: 
 H(��⃗ �G . �M) = (H ��⃗ �G). �M 

 

Thus, the effective g-induction ��⃗ � at  P is: 
 ��⃗ � = H ��⃗ �G 

 
On the basis of the superposition principle we can conclude that the laws of GEM 
mentioned in the previous section remain valid for the effective g-field and g-
induction in the case of the gravitational field of a set of particles describing  
uniform rectilinear motions 
. 
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4.6  THE GRAVITATIONAL FIELD OF A STATIONARY MASS F LOW 
 
The term “stationary mass flow” refers to the movement of an homogeneous and 
incompressible fluid that, in an invariable way, flows relative to an inertial 
reference frame.  The intensity of the flow at an arbitrary point P is characterized 
by the flow density {⃗4.  The magnitude of this vectoral quantity at P equals the 
rate per unit area at which the mass flows through a surface element that is 
perpendicular to the flow at P.   The orientation of {⃗4 corresponds to the direction 
of that flow.  If �⃗ is the velocity of the mass element  L4 . �M  that at the moment 
t flows through P, then: 
    {⃗4 = L4 . �⃗ 

 
So, the rate at which the flow transports – in the positive sense (defined by the 

orientation of the surface vectors �@AB
)  -  mass through an arbitrary surface ΔS,  is: 

 �4 = | {⃗4 . �@AB
}N  

 
We call �4 the intensity of the mass flow through ΔS. 
 
Since a stationary mass flow is the macroscopic manifestation of moving mass 
elements  L4 . �M,  it creates and maintains a gravitational field.  And since the 
velocity �⃗ of the mass element at a certain point is time independent, the 
gravitational field of a stationary mass flow will be time independent.  It is evident 
that the rules of §3.3 also apply for this time independent g-field: 
              1.  �����⃗� = − L4."                                                                                         
     
       2. 	
���⃗� = 0   what implies:   ��⃗� = −+	Q�M� 
 
 
One can prove[2],[3],[4] that the rules for the time independent g-induction are: 
 

       1. �����⃗ � = 0  what implies the existence of a vector gravitational potential 

                               function ~⃗� for which��⃗ � = 	
�~⃗�       

 

       2. 	
���⃗ � = −7". {⃗4 
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These are the laws of GEM in the case of  the gravitational field of a stationary 

mass flow. 
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CHAPTER 5 
 

THE GRAVITATIONAL FIELD OF AN 
ACCELERATED  OBJECT 

 

 
An accelerated object is the source of a gravitational field that, at a sufficient 
great distance r from that object, is characterized by a transverse g-field and 
g-induction that are both inversely proportional to r. 
 
 

5.1 THE g-INDEX OF AN INFORMATON EMITTED BY AN 
ACCELERATED PARTICLE 
 
 

                                                                       ;⃗9 

                                                      Z                                                    ;⃗�      #⃗                                           

                                                                                                             

                                                     P2                              ��⃗ �        P             jR 

 

                                                            �⃗                       	⃗ 

                                                    Q⃗                                         	⃗"                    ;⃗u9 

                                                                R 

 

                                                   P1      m   

                                                       

                                                           R" 

 

                                                    P0                                                             Y  

                                                        O 

                                  X                           
                                                             Fig 5 
 
 
In fig 5 we consider a point mass  m  that, during a finite time interval, moves 
with constant acceleration Q⃗ = Q. ;⃗T relative to the inertial reference frame OXYZ.   
At  the moment t = 0,  m  starts  from rest  at the origin O, and at t = t  it passes at 
the point  P1 .  Its velocity is there defined by �⃗ = �. ;⃗T = Q. �. ;⃗T,  and  its position 
by            W = 12 . Q. �� = 12 . �. � 
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We suppose that the speed � remains much smaller than the speed of light:   c9 ≪1. 
 
The informatons that during the infinitesimal time interval (t, t+dt) pass near the 
fixed point P  (whose position relative to the moving mass m is defined by the 
time dependent position vector 	⃗) have been emitted at the moment �" = � − j�, 
when m – with velocity �⃗" = �". ;⃗T = �(� − j�). ;⃗T – passed at P0 (the position 
of P relative to P0 is defined by the time dependent position vector 	⃗" = 	⃗(� −j�)).   Δt, the time interval during which m moves from P0  to P1 is the time that 
the informatons need to move – with the speed of light – from P0 to P. We can 

conclude that j� = <k9 ,  and that      

�" = �(� − j�) = �(� − 	"# ) = � − Q. 	"#  

 
Between the moments  t = t0  and  t = t0 + Δt,  m moves from P0 to P1.  That 
movement can be considered as the resultant (the superposition) of  
 
       1. a uniform movement with constant speed �" = �(� − j�)   and 
       2. a uniformly accelerated movement with constant acceleration Q.  
 

 
       1.  

 

 

                                                  Z                                                                      #⃗                                                                                                                       

                                                                                                                            jR′                                                                                                                      

                                                                                               -⃗�                   P 

                                                �⃗"             R′            	⃗ ′                                               

                                                         

 

                                                ��]     m                   	⃗"    

                                                           R"    

                                                       

 

                                                 P0                                         

                                                                                                                           Fig 6,a 
 

 

In fig. 6,a, we consider the case of the point mass m  moving with constant speed �" along the Z-axis.  At the moment  �" = � − j�   m passes at P0  and at the 

moment t at V�]:   V"V�] = �". j�.   The informatons that, during the infinitesimal 
time interval (t, t + dt),  pass near the point P - whose position relative to the 
uniformly moving mass m at the moment t is defined by the position vector 	⃗] - 
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have been emitted at the moment t0 when m passed at P0.  Their  velocity vector #⃗ is on the line V"V, their g-index -⃗� points to V�]:  V"V�] = �". j� = �" 	"#  

 
       2. In fig 6,b we consider the case of the point mass m starting at rest at P0  and 
moving with constant acceleration Q along the Z-axis.   
 

 

                                                  Z 

                                                                                                           #⃗      
                                           ��"                                                        P        jR"                                                         
                                                                           -⃗�                       
                                            Q⃗       R"                                                               
                                                                 	⃗" 
 
                                         ��"                                	⃗"    
                                                        R"           
                                                       
                                                                                            
                                                P0 

Fig 6,b 
 

 

At the moment  �" = � − j�  it is at P0  and at the moment  t  at  V�": 
 

V"V�" = 12 . Q. (j�)� 

 
The informatons that during the infinitesimal time interval (t, t + dt) pass near the 
point P (whose position relative to the uniformly accelerated mass m is at t defined  
by the position vector 	⃗") have been emitted at t0 when m was at P0. Their velocity 

vector #⃗ points away from P0 , their g-index -⃗� to V�".  
 

                                    Z’                                 

                                               -⃗�           P 

                                                                   −Q⃗ 

                                    M                  

          
                                         α                                    P0                                                                                 Y’  

Fig. 6,c 
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To determine the position of V�",  we consider the trajectory  of the informatons 
that at t0  are emitted in the direction of P relative to the accelerated reference 

frame OX’Y’Z’ that is anchored to m (fig 6,c;   E = 3� − R"). 

 
Relative to OX’Y’Z’  these informatons are accelerated with an amount −Q⃗:  they 
follow a parabolic trajectory described by the equation: 
 W′ = �+E. b′ − 12 . Q#�. #
-� E . b′� 

 
At the moment t = t0 + Δt, when they pass at P, the tangent line to that trajectory 
cuts the Z’-axis at the point M, that is defined by: 
 

W�] = 12 . Q. (j�)� = 12 . Q. 	"�#� 

 
That means that the g-indices of the informatons that at the moment t  pass  at P, 
point to a point M on the Z-axis that has a lead of  
 

V�"V�" = V"� = 12 . Q. (j�)� = 12 . Q. 	"�#� 

 
on V�", the actual position of the mass m.   And  since V"V�" = V"V�" + V�"V�",    we 
conclude that:   

V"V�" = Q. 	"�#� 

 
 

In the inertial reference frame OXYZ (fig 6), -⃗� points to the point P2 on the Z-
axis determined by the superposition of the effect of the velocity (1) and the effect 
of the acceleration (2): 
 V"V� = V"V�] + V"V�" = �"# . 	" + Q#� . 	"� 

 
The carrier line of the g-index  -⃗� of an informaton that - relative to the inertial 
frame OXYZ - at the moment t passes near P forms a “characteristic angle” jR  
with the carrier line of its velocity vector #⃗, that can be deduced by application of 
the sine-rule in triangle V"V�V (fig 5): 
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 -�g( jR)V"V� = -�g( R" + jR)	"  

 
We conclude:            -�g( jR) = �"# . -�g( R" + jR) + Q#� . 	". -�g( R" + jR) 

 
From the fact that P0P1 - the distance travelled by m during the time interval Δt - 
can be neglected relative to P0P - the distance travelled by light during  the same 
period - it follows that  R" ≈ R" + jR ≈ R  and that 	" ≈ 	.  So:  
                               -�g( jR) ≈ �"# . -�g R + Q#� . 	. -�g R 

 
We can conclude that the g-index -⃗�of an informaton that at the moment t passes 
near P, has a longitudinal component, this is a component in the direction of #⃗ (its 
velocity vector)  and a transversal component, this is a component perpendicular 
to that direction.  It is evident that: 
 -⃗� = −-�. #
-( jR). ;⃗9 − -� . -�g( jR). ;⃗u9 

                                    ≈ −-�. ;⃗9 − -�. ��"# . -�g R + Q#� . 	. -�g R� . ;⃗u9    
 

5.2 THE GRAVITATIONAL FIELD OF AN ACCELERATED PARTI CLE  
 
The informatons that, at the moment t, are passing near the fixed point P - defined 
by the time dependent position vector 	⃗ - are emitted when m was at P0 (fig 6).  

Their velocity #⃗ is on the same carrier line as 	⃗" = V"VA⎯B
.  Their g-index is on the 

carrier line P2P.   According to §5.1, the characteristic angle jR - this is the angle 
between the carrier lines of  -⃗� and  #⃗ - has two components: 
 

       1.  a component jR′
 
related to the velocity of m at the moment (� − <k9 )   when 

the  considered informatons were emitted.  In the framework of our assumptions, 
this component is determined by:  

-�g( jR′) = �(� − 	#)# . -�g R 

 
       2.  a component jR" related to the acceleration of m at the moment  when 
they were emitted.  This component is, in the framework of our assumptions, 
determined by: 
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-�g( jR") = Q(� − 	#). 	#� . -�g R 

 
The macroscopic effect of the emission of g-information by the accelerated mass 
m is a gravitational field (��⃗�, ��⃗ �).  We introduce the reference system (;⃗9 , ;⃗u9 , ;⃗�)  
(fig 6). 
 
       1.  ��⃗�, the g-field at P, is defined as the density of the flow of g-information 
at that point.  That density is the rate at which g-information crosses per unit area 
the elementary surface perpendicular to the direction of movement of the 
informatons.  So ��⃗� is the product of N, the density of the flow of informatons at 
P,  with -⃗� their g-index: 
  ��⃗� = �. -⃗� 

 
According to the postulate of the emission of informatons, the magnitude of -⃗� is 
the elementary g-information quantity: 
   -� = 1!. ." = 6,18.10,0"�1-,� 

 
and the density of the flow of informatons at P  is:  
 

� = ��4?. 	"� ≈ ��4. ?. 	� = !. �4?. 	� 

. 

Taking  into account that 
��k.9: = 7",  we obtain: 

           ��⃗� = − �4?. .". 	� . ;⃗9 

                     − { �4?. .". #. 	� . �(� − 	#). -�g R + 7". �4?. 	 . Q(� − 	#). -�g R}. ;⃗u9   
 

        2.   ��⃗ �, the g-induction at P, is defined as the density of the cloud of � -
information at that point. That  density is the product of n, the density of the cloud 
of informations at P (number per unit volume) with -⃗e, their β-index: ��⃗ � = g. -⃗e 
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The β-index of an informaton refers to the information it carries about the state of 
motion of its emitter;  it is defined as: 
 

-⃗e = #⃗ × -⃗�#  
 
And the density of the cloud of informatons at P is related to N, the density of  the 

flow of informatons at that point by:  g =  9 .  

 
 So:                             

��⃗ � = g. -⃗e = �# . #⃗ × -⃗�# = #⃗ × (�. -⃗�)#� = #⃗ × ��⃗�#�  

 
And  with the expression of that we have derived above under 1 we finally obtain: 

 ��⃗ � = −{ 7". �4. ?. 	� . �(� − 	#). -�g R + 7". �4. ?. #. 	 . Q(� − 	#). -�g R}. ;⃗� 

 
 

From this it can be concluded that at a point P, sufficient far from the accelerated 
particle m, the components of its gravitational field are both transverse to the 

velocity of the informatons and they are proportional to  �<. 
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CHAPTER 6 
 

THE MAXWELL-HEAVISIDE EQUATIONS 
 

 
 
6  The Maxwell-Heaviside equations 
 
The gravitational field is set up[1],[2],[3] by a given distribution of - whether or not 
moving - masses and it is defined by a vector field with two components:   the “g-

field” characterized by the vector ��⃗� and the “g-induction” characterized by the 

vector ��⃗ �.  These components each have a value defined at every point of space 
and time and are thus, relative to an inertial reference frame O, regarded as 
functions of the space and time coordinates. 
 
Let us focus on the contribution to a gravitational field of one of its sources: a 
certain mass m.  We focus, more specifically, on the contribution of m to the flow 
of g-information at an arbitrary point P in the field.  That flow is made up of 
informatons that pass near P in a specific direction with velocity #⃗ and it is 
characterized by N, the rate per unit area at which these informatons  cross an 
elementary surface perpendicular to the direction in which they move.  The cloud 
of these informatons in the vicinity of P is characterized by the density n:  n is the 
number of informatons per unit volume.  N and n are linked by the relationship: 
                                    g = �#           (1) 

 
The definition in chapter 2 of an informaton implies that every informaton that 
passes near P is characterized by two attributes that refer to its emitter: its g-index -⃗� and its β-index -⃗e.  sg, the magnitude of the g-index is the elementary quantity 
of g-information.  It is a fundamental physical constant.  -⃗e refers to the state of 
motion of the source of the informaton and is defined by the relationship 
 

-⃗e = #⃗ × -⃗�#           (2) 

 
The informatons emitted by m that pass near P  with velocity #⃗  contribute there 
to the density of the g-information flow with an amount (�. -⃗�).   That vectoral 
quantity is the rate per unit area at which g-information at P crosses an elementary 
surface perpendicular to the direction in which it moves.  It is the contribution of 
m to  the g-field at P.  We put 
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��⃗� = �. -⃗� 
 

And the same informatons  contribute there to the density of the g-information 
cloud with an amount (g. -⃗e). That vectoral quantity determines at P the amount 
of β-information per volume unit.  It is the contribution of m to the g-induction at 
P.  We put: ��⃗ � = g. -⃗e 

 
 

 
                                                         Y 
 
                                                                                      Q             
                                                                                          

                                                                    #⃗ 
                                                                        jR 
                                      -⃗�            P                                      X 
                                                         
                                                   -⃗e 
                                         Z                   

Fig 7 
 

In fig 7, we consider the flow of informatons that - at the moment t - pass near P 
with velocity  #⃗.  They are completely defined  by their attributes -⃗� and -⃗e, 
respectively their g-index and their β-index.  jR is their characteristic angle: the 
angle between the lines carrying  -⃗� and #⃗ that  is characteristic for the movement 
of the emitter.   
 
The infinitesimal change of the attributes of an informaton at P between the 
moments t and (t + dt), is governed by  the kinematics of that information.  An 
informaton that at the moment t passes at P is at the moment (t + dt) at Q, with 
PQ = c.dt.   This implies that the spatial variation of the attributes of an informaton 
between P and Q  at the moment t equals the change in time of those attributes at 
P between the moment (t - dt) and the moment t.   
 
On the macroscopic level, this implies that there must be a relationship between 
the change in time of the gravitational field (��⃗�, ��⃗ �) at a point P and the spatial 
variation of that field in the vicinity of P.  
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The intensity of the spatial variation of the components of the  gravitational field 
at P is characterized by �����⃗�,  �����⃗ �,  	
���⃗� and by 	
���⃗ �  and the rate at which 

these components change in time by   
��⃗ ���   and by  

���⃗ ��� .   

 
From the above it can be concluded that it makes sense to investigate the 
relationships between the quantities that characterize the spatial variations of 
(��⃗�,��⃗ �) and the rate’s at which they change in time. 
  
6.1  ������⃗ � -  THE FIRST EQUATION IN FREE SPACE 
 
In §3.1 and in §4.1 and  it is shown that the physical fact that the rate at which g-
information flows inward a closed empty space must be equal to the rate at which 
it flows outward, can be expressed as: 

 F��⃗�N . �@AB = 0 

 
So (theorem of Ostrogradsky)[4]:   �����⃗� = 0 

 
In vacuum, the law of conservation of  g-information can be expressed as 
followed: 
 
(1)  At a matter free point P of a gravitational field, the spatial variation of ��⃗� 

obeys the law:    �����⃗� = 0 
 
This is the first equation of Maxwell-Heaviside in vacuum.  
 
 
Corollary : At a matter free point P of a gravitational field xx� [�. #
-( jR)] =  0                                                           
 
 Because[4] 

 �����⃗� = ���h�. -⃗�i = +	Q�(�). -⃗� +  �. ���h-⃗�i               (3) 
 
it follows from the first  equation that: 
 



42 

 +	Q�(�). -⃗� +  �. ���(-⃗�) = 0 
  
       1.  First we calculate:  +	Q�(�). -⃗�. 
 
       Referring to fig 7: 
 +	Q�(�) = �� − �XV� . ;⃗9 = �� − �X#. �� . ;⃗9 

 
       Because an informaton that at the moment t  passes at P is at the moment 
       (t + dt) at Q,  (with PQ = c.dt).  
 
 �� − �X�� = �(� − ��) − �(�)�� = − x�x�  

 
       So: 

+	Q�(�) = − 1# . x�x� . ;⃗9 = − 1# . x�x� . #⃗# 

 
       And: 
       +	Q�(�). -⃗� = − 1#� . x�x� .  #⃗. -⃗� =   1# . x�x� . -�. #
-( jR)         (4) 

     
 
        2.  Next, we calculate:  �. ���(-⃗�) 
 

���(-⃗�) = ∯ -⃗�. �@AB
�M  

 
       For that purpose, we calculate the double integral over the closed surface S 
       formed by the infinitesimal surfaces dS  that are at P and  Q  perpendicular 
       to the flow of informatons (perpendicular to #⃗) and by the tube that connects 
       the edges of these surfaces (and that is parallel to #⃗).  dV =c.dt.dS  is the 
       infinitesimal volume enclosed by S: 
 

         

        ���h-⃗�i = ∯ -⃗�. �@AB
�M =  -�. �@. #
-( jRX) − -�. �@. #
-(jR�)�@. #. ��    

 
 



43 

 

       Because an informaton that at the moment t  passes at P is at the moment 
       (t + dt) at Q,  (with PQ = c.dt): 
  

 #
-( jRX) − #
-(jR�) �� = cos[ jR(�)] − cos [jR(� − ��)]�� = x[cos(jR)]x�  

        ���h-⃗�i = 1# . -�. x{#
-( jR)}x�  

       And:    
                        �. ���h-⃗�i = �# . -�. x{#
-( jR)}x�       (5) 

 
 

Substitution of (4) and (5) in (3) gives: 
 
            1# . x�x� . -�. #
-( jR) + �# . -� . x{#
-( jR)}x� = 0 

 
Or:  xx� [�. #
-( jR)] =  0     (�) 

 
 
6.2  ��� ��⃗ ¡ –  THE SECOND EQUATION IN FREE SPACE 
 

 
                                                         Y 
 
                                                                                      Q             
                                                                                          
                                                                    #⃗ 
                                                                        jR 
                                      -⃗�            P                                      X 
                                                         
                                                   -⃗e 
                                         Z                   

Fig 8 
 

We refer  to fig 8 and notice that:  
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-⃗� = −-�. ;⃗_                  and                   -⃗e = 9⃗×¢⃗�9 = -� . -�g( jR). ;⃗T 

 
 

 
From mathematics[4] we know: 
 �����⃗ � = ���hg. -⃑ei = +	Q�(g). -⃗e + g. ���h-⃗ei         (7) 

 
 
       1.  First we calculate:  +	Q�(g). -⃗e 
 
       +	Q�(g). -⃗e = 0  because grad(n) is perpendicular to -⃗e.  Indeed n changes  
       only in the direction of the flow of informatons, so grad(n) has the same 
       orientation as #⃗: 
 
       2.  Next we calculate:  g. ���(-⃗e)  
 

���(-⃗e) = ∯ -⃗e . �@AB
�M  

   
       We calculate the double integral over the closed surface S formed by the 
       infinitesimal surfaces  dS =   dz.dy  that are at P and at Q perpendicular to the 
       X-axis and by the tube  that connects the edges of these surfaces. 
 
       Because -⃗e is oriented along the Z-axis the flux of -⃗e through the planes dz.dy 
       and dx.dz is zero, while the fluxes through the planes dx.dy are equal and 
       opposite.  So we can conclude that: 
 

���(-⃗e) = ∯ -⃗e . �@AB
�M = 0 

 
 

Both terms of the expression (7) of �����⃗ � are zero, so �����⃗ � = 0, what implies 
(theorem of Ostrogradsky) that for every closed surface S in a gravitational field: 
           F��⃗ �N . �@AB = 0 

 
We conclude: 
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(2)  At a matter free point P of a gravitational field, the spatial variation of ��⃗ � 

obeys the  law:    �����⃗ � = 0 
 
This is the second equation of Maxwell-Heaviside in vacuum.  It is the expression 
of the fact that the β-index of an informaton is always perpendicular to both its g-
index -⃗� and to its velocity #⃗. 
 
6.3  ¤¥¦���⃗ �  -  THE THIRD  EQUATION IN FREE SPACE 
 
The density of the flow of informatons that - at the moment t - passes near P with 
velocity  #⃗  (fig 8) is defined as:   
 ��⃗� = �. -⃗� = −�. -�. ;⃗_     

  
We know that[4] 

 	
���⃗� = §+	Q�(�) × -⃗�¨ + �. 	
�h-⃗�i        (8) 
 

 
       1.  First we calculate: {+	Q�(�) × -⃗�} 
 
       This expression describes the component of 	
���⃗� caused by the spatial 
       variation of N in the vicinity of P when jR remains constant.  
 
       N  has the same value at all points of the infinitesimal surface that, at P, is  
       perpendicular to the flow of informatons.   So grad(N) is parallel to #⃗ and its 
       magnitude is the increase of the magnitude of N per unit length.  Thus,  
       with  PQ = c.dt ,    grad(N) is determined by:     
 

+	Q�(�) = �� − �XV� . #⃗# = �� − �X#. �� . #⃗# 
    

       And:                   

+	Q�(�) × -⃗� = �� − �X#. �� . #⃗# × -⃗� = �� − �X#. �� . -⃗e 

 
 
       The density of the flow of informatons at Q at the moment t is equal to the 
       density of that flow at P at the moment (t - dt), so: 
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 �� − �X�� =  �(� − ��) − �(�)�� =  − x�x�  

        
       And taking into account that :  
 �# = g 

       we obtain: 
   +	Q�(�) × -⃗� = − xgx� . -⃗e                (9) 

 
 

       2.  Next we calculate: { �. 	
�(-⃗�) } 
 
       This expression describes the component of 	
���⃗� caused by the spatial 
       variation of jR - the orientation of the g-index - in the vicinity of P - when N 
       remains constant.  (jR)P  is the characteristic angle of the informatons that 
       pass near P and (jR)Q is the characteristic angle of the informatons that  
       at the same moment pass near Q.  (fig 9) 
 
       For the calculation of 

	
�(-⃗�) = ∮ -⃗�. �ªAB
�@  

 

       with dS  the  encircled area, we calculate ∮ -⃗� . �ªAB
 along the closed path   

       PQqpP  that encircles  dS:  dS= PQ.Pp = c.dt.Pp.   (PQ and qp are parallel 
       to the flow of the informatons,  Qq  and pP are perpendicular to it). 
 
 
                                                           Y                       
                                                                                    q         
                                                                                     
                                                                         -⃗��             
                                                   p                                       Q 
                                                                          #⃗ 
                                                                           jR 
                                     -⃗�X                                                           X 
                                               -⃗e       P 
 
                                      Z                           Fig 9 
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�. 	
�h-⃗�i = �. -� . -�g[( jR)�]. �« − -�. -�g[( jR)X)]. ¬V#. ��. V¬ . ;⃗T 

 
 

       The characteristic angle of the informatons  at Q  at the moment t is  equal to 
       the characteristic angle of the informatons at P at the moment (t - dt),  so: 
 
 

�. 	
�h-⃗�i = �. -�. sin[jR(� − ��)]. �« − -�. sin[ jR(�)]. ¬V#. ��. V¬ . ;⃗T 

 
 
       The rate at which sin(jR) in P changes at the moment t, is: 
 
 x{-�g( jR)}x� = -�g{[ jR](�)}  − sin{[jR](� − ��)}��  

 
       And taking into account that  g = �#  
       
       we obtain:   
 
 �. 	
�h-⃗�i = − g. -�. x{-�g( jR)}x� . ;⃗T = − g. xx� {-�. -�g( jR). ;⃗T} 

 
       or 

�. 	
�h-⃗�i = −g. x-⃗ex�                (10) 
 
 

      Combining the results (9) and (10), we obtain:    
  	
���⃗� = +	Q�(�) × -⃗� + �. 	
�h-⃗�i 

 

 = − xgx� . -⃗e + g. x-⃗ex� ®   
 

                        = − xhg. -⃗eix� = − x��⃗ �x�                (��) 
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We conclude: 
 
(3)  At a matter free point P of a gravitational field, the spatial variation of ��⃗� 

and the rate at which ��⃗ � is changing are connected by the relation: 

	
���⃗� = − x��⃗ �x�  

 
This is the third equation of Maxwell-Heaviside in vacuum.  It is the expression 
of the fact that any change of the product g. -⃗e at a point of a gravitational field is 
related to a spatial variation of the product �. -⃗� in the vicinity of that point. 
 
The relation 

	
���⃗� = − x��⃗ �x�   
 
implies (theorem of Stokes[4]):   

¯ ��⃗� . �ªAB = − | x��⃗ �x�N . �@AB = − xx� |��⃗ �N . �@AB = − xC�x�  

 

The orientation of the surface vector �@AB
 is linked to the orientation of the path on 

L  by the “rule of the corkscrew”.  C� = ∬ ��⃗ �N . �@AB
 is called the “β-information-

flux through S”. 
 
So, in a gravitational field, the rate at which the surface integral of  ��⃗ �  over a 

surface S changes is equal and opposite to the line integral of  ��⃗� over the 
boundary L of  that surface. 
 

6.4  ¤¥¦±��⃗ �  and  
²���⃗ �²¦  -  THE FOURTH EQUATION IN FREE SPACE 

 
We consider again ��⃗� and ��⃗ �, the contributions of the informatons that - at the 
moment t – pass with velocity #⃗  near P,  to the g-field and to the g-induction at  
that point. (fig 10).  
 ��⃗� = �. -⃗� = −�. -�. ;⃗_                                                                             

 
and       
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��⃗ � = g. -⃗e = g. #⃗ × -⃐�# = g. -� . -�g( jR). ;⃗T                                      
                                                         Y 
 
                                                                                      Q             
                                                                                          

                                          ;⃗u9                     #⃗ 
                                                                        jR 
                                      -⃗�          P                                        X 
                                                         
                                                   -⃗e 
                                         Z   
                                                                Fig 10               
 
 
A.  Let us calculate 	
���⃗ �. 
 
We know that[4] 	
���⃗ � = §+	Q�(g) × -⃗e¨ + g. 	
�h-⃗ei          (12) 
 
 

       
1.  First we calculate:{+	Q�(g) × -⃗e} 

 
       This expression describes the component of 	
���⃗ � caused by the spatial 
       variation of n in the vicinity of P when jR remains constant.  
 
        n has the same value at all points of the infinitesimal surface that, at P, is 
        perpendicular to the flow of informatons.  So grad(n) is parallel to #⃗ and its 
        magnitude is the increase of the magnitude of n per unit length.   
 
        With   PQ = c.dt ,   grad(n) is determined by:    

+	Q�(g) = g� − gXV� . #⃗# =  g� − gX#. �� . #⃗# 

 
       The density of the cloud of informatons at Q at the moment t is equal to the 
       density of that flow at P at the moment (t - dt), so: 
 g� − gX�� =  g(� − ��) − g(�)�� =  − xgx�  
 
       And 
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+	Q�(g) = − 1# . xgx� . #⃗# = − 1# . xgx� . ;⃗9 

 
 

       The vector {+	Q�(g) × -⃗e} is perpendicular to het plane determined by #⃗  
       and  -⃗e.   So, it lies in the XY-plane and is there perpendicular to #⃗  forming 
       an angle  jR with  the axis OY.   Taking into account the definition of vectoral 
       product we obtain: 
 +	Q�(g) × -⃗e =  − 1# . xgx� . -� . -�g( jR). (;⃗9 × ;⃗T) 

 
       With ;⃗9 × ;⃗T =  −;⃗u9

  
 +	Q�(g) × -⃗e = 1# . xgx� . -�. -�g( jR). ;⃗u9 

       And, taking into account that g =  9 , we obtain: 

 +	Q�(g) × -⃗e = 1#� . x�x� . -�. -�g( jR). ;⃗u9       (13)
     

 
       2.  Next we calculate {g. 	
�(-⃗e) }  
 
       This expression is the component of 	
���⃗ � caused by the spatial variation of 
       -⃗e in the vicinity of P when n remains constant.   For the calculation of 
 

	
�(-⃗e) = ∮ -⃗e . �ªAB
�@ . ;⃗u9 

 

       with dS  the  encircled area, we calculate ∮ -⃗e . �ªAB
 along the closed path 

       PpqQP  that encircles  dS:  dS= PQ.Pp = c.dt.Pp  (fig 11).   (PQ and qp are 
       parallel to the flow of the informatons,  Qq  and pP are perpendicular to it). 
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                                                           Y 
 
                                              ;⃗u9 
                                                                                    -⃗��                                       
                                                                                          Q    
                                                                          #⃗ 
                                                                                           
                                     -⃗�X                            jR                       X   
                                               -⃗e        P              q  
                                            p           
                                         
                                    Z 

Fig 11 
 

	
�(-⃗e) = ∮ -⃗e . �ªAB
�@ . ;⃗u9 = -�. -�g[( jR)X)]. V¬ − -�. sin [( jR)�]. «�#. ��. V¬ ;⃗u9 

 
 

       The characteristic angle of the informatons  at Q  at the moment t is  equal to 
       the characteristic angle of the informatons at P at the moment (t – dt),  so: 
 
 

	
�h-⃗ei = ∮ -⃗e . �ªAB
�@ . ;⃗u9 = -� . {sin[ jR(�)]. V¬ − -� . sin[jR(� − ��)]}. «�#. ��. V¬ . ;⃗u9 

 
 
      The rate at which sin(jR) at P changes at the moment t, is: 
 
 x{-�g( jR)}x� = -�g{( jR)[�]}  − sin{(jR) [� − ��]}��  

 
       So: 

  

	
�h-⃗ei = -�. 1# . x[sin(jR)]x� . ;⃗u9 

 
                         
       And  with  g = �#  
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       we finally obtain:
 

 
 

      

g. 	
�h-⃗ei = -�. 1#� . �. x[sin(jR)]x� . ;⃗u9          (14)
 

 
 
Substituting the results (13) and (14) in (12) gives: 
 
 

	
���⃗ � = 1#� . -�. {x�x� . -�g( jR) + �. x[sin(jR)]x� }. ;⃗u9 

                 = 1#� . -� . xx� [�. sin(jR)]. ;⃗u9                 (�´)          
  
 

B.  Now we calculate 
��⃗ ���  

 
We know that[4]: 
 

               x��⃗�x� = x�x� . -⃗� + �. x-⃗�x�  

 
And that: 

-⃗� = −-�. ;⃗_                  and                     x-⃗�x� = -� . x(jR)x� . ;⃐a          
 
So: 
 

               x��⃗�x� = − x�x� . -�. ;⃗_ + �. -�. x(jR)x� . ;⃐a 

Taking into account:  
 ;⃗_ = #
-( jR). ;⃗9 − -�g( jR). ;⃗u9    and    ;⃗a = -�g( jR). ;⃗9 + #
-( jR). ;⃗u9 
 
we obtain:
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   x��⃗�x� = ·− x�x� . -�. #
-( jR) + �. -�. x(jR)x� . -�g( jR)¸ . ;⃗9           
                                                                                                       + ·x�x� . -� . -�g( jR) + �. -�. x(jR)x� . #
-( jR)¸ . ;⃗u9             
 
or: x��⃗�x� = -�. ¹− xx� [�. #
-( jR)¸ . ;⃗9 + xx� [�. sin(jR)]. ;⃗u9}      
 
 
Taking into account (6), we find: 
 x��⃗�x� = -� . xx� [�. sin(jR)]. ;⃗u9                (��)                                  
 
 
C.  From (15) an (16), we conclude: 

	
���⃗ � = 1#� x��⃗�x�  

 
(4)  At a matter free point P of a gravitational field, the spatial variation of ��⃗ � 

and the rate at which ��⃗� is changing are connected by the relation:  

	
���⃗ � = 1#� x��⃗�x�  

 
This is the fourth equation of Maxwell-Heaviside in vacuum.  It is the expression 
of the fact that any change of the product �. -⃗� at a point of a gravitational field 
is related to a spatial variation of the product g. -⃗� in the vicinity of that point. 
 
This relation  implies (theorem of Stokes): In a gravitational field, the rate at 
which the surface integral of ��⃗� over a surface S changes is proportional to the 

line integral of ��⃗ � over the boundary L of that surface:  
  

¯ ��⃗ � . �ªAB = 1#� | x��⃗�x�N . �@AB = 1#� xx� |��⃗�N . �@AB = 1#� xC4x�  
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The orientation of the surface vector �@AB
 is linked to the orientation of the path on 

L by the “rule of the corkscrew”.  C4 = ∬ ��⃗�N . �@AB
 is called the “g-information-

flux through S”. 
 
6.5  THE MAXWELL-HEAVISIDE EQUATIONS 
 
The volume-element at a point P inside a mass continuum is in any case an emitter 
of g-information and, if the mass is moving, also a source of β-information.  
According to §3.3, the instantaneous value of L4 - the mass density at P - 

contributes to the instantaneous value of �����⃗� at that point with an amount − º»�k ;   

and according to §4.6 the instantaneous value of {⃗4 - the mass flow density -  
contributes to the instantaneous value of 	
���⃗ � at P with an amount −7". {⃗4. 
   
It is evident that at a point of a gravitational field - linked to an inertial reference 
frame O - one must take into account the contributions of the local values of L4(`, b, W; �) and of {⃗4(`, b, W; �) .  This results in the generalization and expansion 
of the laws at a mass free point.  By superposition we obtain: 
 

(1)   At a point P of a gravitational field, the spatial variation of ��⃗� obeys the  
law:    �����⃗� = − L4."  

 
In integral form:     C4 = F��⃗�N . �@AB = − 1." . O L4 .4 �M

 
 
 
 

(2)   At a point P of a gravitational field, the spatial variation of ��⃗ � obeys the law:   

 �����⃗ � = 0 

 
In integral form:      C� = F��⃗ �N . �@AB = 0 
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(3)  At a point P of a gravitational field, the spatial variation of  ��⃗� and the rate 

at which ��⃗ � is changing are connected by the relation:  

	
���⃗� = − x��⃗ �x�  

 
In integral form:      

¯ ��⃗� . �ªAB = − | x��⃗ �x�N . �@AB = − xx� |��⃗ �N . �@AB = − xC�x�  
 
 

(4)  At a point P of a gravitational field, the spatial variation of ��⃗ � and the rate 

at which ��⃗� is changing are connected by the relation:  

	
���⃗ � = 1#� x��⃗�x� − 7". {⃗4 

 
In integral form:  

¯ ��⃗ � . �ªAB = 1#� | x��⃗�x�N . �@AB − 7". |{⃗�N . �@AB = 1#� . xx� |��⃗�N . �@AB − 7". |{⃗4N . �@AB
 

 
 
These are the laws of Heaviside-Maxwell or the laws of GEM.  
 
6.6  CONCLUSION  
 
The mathematical deductions of the laws of GEM confirm that these equations  
indicate that there is no causal link between ��⃗ � and ��⃗ �. Therefore, we must 
conclude that a gravitational field is a dual entity always having a “field-” and 
an “induction-” component  simultaneously created by their common sources: 
time-variable masses and mass flows•.   
 
The GEM equations are analogue to Maxwell’s equations in EM and it is proved[5]  

that these are consistent with special relativity.  Thus, the Maxwell-Heaviside 
equations are invariant under a Lorentz transformation and GEM is consistent 
with special relativity.   In this context it should be noted that the fact that the rate 
at which a material body emits informatons is independent of its velocity  and 
completely defined by its rest mass m0, implies that in equation (1) the value of  

 
• On the understanding that the induction-component equals zero if the source of the field is 
time independent. 
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L4 =  �½k�P   depends on the state of motion – relative to the considered inertial 

reference system - of the mass element dm0.  Indeed in the case of a moving mass 
element,  the Lorentz contraction must be taken into account in the determination 
of dV.  Because a mass flow is made up of moving mass elements its density  {⃗4 
also depends on the inertial reference frame in which it is considered.  This implies 
that in equation (4) the expression of  {⃗4 also depends on the inertial reference 
frame. 
 
In appendix B it is proven that the GEM equations are mathematically consistent. 
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CHAPTER 7 
 

THE GRAVITATIONAL INTERACTIONS 
 
 

In the framework of the theory of informatons, the gravitational interactions are 
understood as the reaction of an object to the disturbance of its proper 
gravitational field by gravitational fields of other objects. 
 
7.1  THE GRAVITATIONAL INTERACTION BETWEEN PARTICLE S 
AT REST 
 
We consider a set of point masses anchored in an inertial reference frame O.  They 
create and maintain a gravitational field that at each point of the space linked to 
O is completely determined by the vector ��⃗�.  Each mass is “immersed” in a cloud 
of g-information.  At every point, except at its own position, each mass contributes 
to the construction of that cloud. 
 
Let us consider the mass m anchored at P.  If the other masses were not there, then 
m would be at the centre of a perfectly spherical cloud of g-information.  In reality 
this is not the case: the emission of g-information by the other masses is 
responsible for the disturbance of that “characteristic symmetry” of the proper g-
field of m.  Because ��⃗� at P represents the intensity of the flow of g-information 
send to P by the other masses, the extent of disturbance of the characteristic 
symmetry in the immediate vicinity of m is determined by ��⃗� at P. 
 
If it was free to move, the point mass m could restore the characteristic symmetry 
of the g-information cloud in its immediate vicinity by accelerating with an 
amount Q⃗ = ��⃗�.  Indeed, accelerating this way has the effect that the extern field 
disappears in the origin  of the reference frame anchored to m.  If it accelerates 
with an amount Q⃗ = ��⃗�, the mass would become “blind” for the g-information 
send to its immediate vicinity by the other masses,  it  “sees” only its proper 
spherical g-information cloud. 
 
So, from the point of view of a particle at rest at a point P at a gravitational field ��⃗�, the characteristic symmetry of the g-information cloud in its immediate 

vicinity is conserved if it accelerates with an amount  Q⃗ = ��⃗�.  A point mass that 
is anchored in a gravitational field cannot accelerate.  In that case it tends  to move.  
These insight is expressed in the following postulate: 
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A particle anchored at a point of a gravitational field is subjected to a tendency 
to move in the direction defined by ��⃗�, the g-field at that point.  Once the 

anchorage is broken, the mass acquires  a vectoral acceleration Q⃗ that equals  ��⃗�. 
 

7.2  THE GRAVITATIONAL FORCE – THE FORCE CONCEPT 
 
A point mass m, anchored at a point P of a gravitational field, experiences an 
action because of that field, an action that is compensated by the anchorage. 
 
       1. That action is proportional to the extent to which the characteristic 
symmetry of the proper gravitational field of m in the immediate vicinity  of P is 
disturbed by the extern g-field, thus to the value of ��⃗� at P. 
 
       2.  It depends also on the magnitude of m.  Indeed, the g-information cloud 
created  and maintained by m is more compact if m is greater.  That implies that 
the disturbing effect on the spherical symmetry around m  by the extern g-field ��⃗�  

is smaller when m is greater.   Thus, to impose the acceleration Q⃗ = ��⃗�, the action 
of the gravitational field on m  must be greater if m is greater. 
 
We can conclude that the action that tends to accelerate a point mass m in a 
gravitational field must be proportional to ��⃗�, the g-field to which the mass is 

exposed; and to m, the magnitude of the mass.   We represent that action by �⃗4 
and we call this vectoral quantity “the force developed by the g-field on the mass”  
or the gravitational force on m.  We define it by the relation: 
  �⃗4 = �. ��⃗� 

 
A mass anchored at a point P cannot accelerate, what implies that  the effect of 
the anchorage must compensate the gravitational force.  It cannot be otherwise 
than that the anchorage exerts an action on m that is exactly equal and opposite to 
the gravitational force.  That action is called a reaction force.   
 
Between the gravitational force on a mass m and the local field strength exists the 
following relationship:   

��⃗� = �⃗4�  

 
So, the acceleration imposed to the mass by the gravitational force is:   
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Q⃗ = �⃗4�  

 
Considering that the gravitational force is nothing but a special force, we can 
conclude that this relation can be generalized.  
  
The relation between a force �⃗ and the acceleration Q⃗  that it imposes to a free 
mass m is:     �⃗ = �. Q⃗ 

 
7.3  NEWTONS LAW OF UNIVERSAL GRAVITATION  
   
 

 

                                                                                                                 P2                 ;⃗��                                                             

                                                                      R                       �⃗��              m2                    

                                                                                                                           

                                                             �⃗�� 

 

                                    m1     

                       ;⃗��               P1                    
Fig 12 

 

In fig 12 we consider two particles with (rest) masses m1 and m2 anchored at the 
points P1 and P2 of an inertial reference frame.    
 
       1. m1  creates and maintains a gravitational field that at P2 is defined by the g-
field: ��⃗�� = − ��4. ?. .". ¾� . ;⃗�� 

 
We show that this result is embedded in the GEM description of gravity.   
 
The first GEM-equation - that is the mathematical expression of the conservation 
of g-information - states that the flux of the gravitational field through an arbitrary 
closed surface S  is determined by the enclosed mass min according to the law: 
  F ��⃗� . �@AB = − �GD."        (1) 

         
Let us apply this equation to an hypothetical sphere  S  with radius R centered on 
P1.  
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       1.  Because of the symmetry,  ��⃗� is at every point of  that sphere perpendicular 
            to its surface and has the same magnitude.  So, at an arbitrary point P of 
            the sphere, ��⃗� can be expressed as  

 ��⃗� = ��< . ;⃑< 
 

            where ;⃗< and ��< respectively are  the unit vector and the component (with 

            constant magnitude) of  ��⃗� in  the direction of V�VA⎯B
.   

 

            Further, at any point of the surface of the sphere:  �@AB = �@. ;̄<. 
 

            With this information we calculate  ∯ ��⃗N . �@AB
: 

 
 F��⃗�N . �@AB = F��< . ;⃗<N . �@. ;⃗< = F ��< . �@ = ��< . F�@NN = ��< . 4?¾�   (2) 

      
 
            2. The enclosed mass  is m1, so  
 �GD = ��        (3) 

 
 
Taking into account (2) and (3), (1) becomes: 
 ��< . 4?¾� = − ��."  

 
We conclude: at a point P at a distance R from P1 the gravitational field is pointing 
to P1 and determined by:  
 ��⃗� = ��< . ;⃗< = − ��4?."¾� . ;⃗< 

 
In particular at the point P2: 
 ��⃗�� = − ��4. ?. .". ¾� . ;⃗�� 
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If m2 was free,  according to the postulate of the gravitational interaction it  would 
accelerate with an amount Q⃗: 
 Q⃗ = ��⃗�� 

 
So the gravitational field of  m1  exerts a “gravitational force” on m2: 
   �⃗�� = ��. Q⃗ = ��. ��⃗�� = − ��. ��4. ?. .". ¾� . ;⃗�� 

 
In a similar manner we find �⃗��:  
  �⃗�� = − ��. ��4. ?. .". ¾� . ;⃗�� = −�⃗�� 

 
 
This is the mathematical expression of “Newton’s law of universal gravitation”[1]:  
 
The force between any two particles having masses m1 and m2  separated by a 
distance R is an attraction acting along the line joining the particles and has the 
magnitude 
 � = �. ��. ��¾� = 14?." . ��. ��¾�  

 

 � = �23�k  is a universal constant having the same value for all pairs of particles. 

 
 
7.4  THE GRAVITATIONAL INTERACTION BETWEEN MOVING 
OBJECTS  
 
We consider a number of point masses moving relative to an inertial reference 
frame O.  They create and maintain a gravitational field that at each point of the 
space linked to O is defined by the vectors ��⃗� and ��⃗ �.  Each mass is “immersed” 
in a cloud of informatons carrying both g- and β-information.  At each point, 
except at its own position, each mass contributes to the construction of that cloud.   
 
Let us consider the mass m that, at the moment t, goes through the point P with 
velocity �⃗.  
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       1.  If the other masses were not there ��⃗�]  - the g-field in the immediate vicinity 
of  m (the proper g-field of m) - would, according to §4.2,  be symmetric relative 
to the carrier line of the vector �⃗.  This results from the fact that the g-indices of 
the informatons emitted by m during the time interval (t - Δt, t + Δt)  are all 
directed to that line.   In reality that symmetry is disturbed by the g-information 
that the other masses send to P. ��⃗�, the instantaneous value of the g-field at P, 
defines the extent to which this occurs. 
 
       2.  If the other masses were not there ��⃗ �]  -  the g-induction near m  (the proper g-induction of m) - would , according to §4.4,  “rotate” around the carrier line of 
the vector �⃗.  The vectors defining the pseudo-gravitational-field ��" = �⃗ × ��⃗ �]   
defined by the vector product of �⃗ with the g-induction that characterizes the 
proper β-field of m, would - just like ��⃗�]  - be symmetric relative to the carrier line 
of the vector �⃗.  In reality this symmetry is disturbed  by the β-information send 
to P by the other masses.  The vector product (�⃗ × ��⃗ �) of the instantaneous values 
of the  velocity of m and of the g-induction at P,  characterizes  the  extent to 
which this occurs.   
 
So, the characteristic symmetry of the cloud of g-information around a moving 
mass (the proper gravitational field) is in the immediate vicinity of m disturbed 
by ��⃗� regarding the proper g-field;  and by (�⃗ × ��⃗ �) regarding the proper β-
induction.  
 
If it was free to move, the point mass m could restore the characteristic symmetry 
in its immediate vicinity by accelerating with an amount Q⃗′ = ��⃗� + (�⃗ × ��⃗ �)  
relative to its proper inertial reference frame• O'.  In that manner it would become 
“blind” for the disturbance of symmetry of the gravitational field in its immediate 
vicinity.  These insights form the basis of the following postulate. 
 
A particle m, moving with velocity �⃗ in a gravitational field (��⃗�, ��⃗ �), tends to 
become blind for the influence of that field on the symmetry of its proper 
gravitational  field.  If it is free to move, it will accelerate relative to its proper 
inertial reference frame  with an amount Q⃗]: 
 Q⃗] = ��⃗� + (�⃗ × ��⃗ �) 
 
 

 
•  The proper inertial reference frame O’ of the particle  m is the reference frame that at each moment t 
moves relative to O  with the same velocity as m. 
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7.5  THE GRAVITATIONAL FORCE LAW  
 
The action of the gravitational field (��⃗�, ��⃗ �) on a point mass that is moving with 
velocity �⃗ relative to the inertial reference frame O,  is called the gravitational 
force �⃗4 on that mass.  In extension of  §7.2 we define �⃗4 as: 
 �⃗4 = �". Á��⃗� + (�⃗ × ��⃗ �)Â 
 
m0  is the rest mass of the point mass: it is the mass that determines the rate at 
which it emits  informatons in the space linked to O.  If it is free to move, the 
effect of  �Ã4 on the point mass m is that it will be accelerated relative to the proper 
inertial reference frame O’ with an amount  Q⃗]: 
 Q⃗] = ��⃗� + (�⃗ × ��⃗ �) 
   
This acceleration can be decomposed in a tangential (Q⃗Ä] ) and a normal component 
(Q⃗ ] ): 
 Q⃗Ä] = QÄ] . ;⃗Ä             and             Q⃗ ] = Q ] . ;⃗  
 
where ;⃗Ä and ;⃗  are the unit vectors, respectively along the tangent and along the 
normal to the path of the point mass in O’ (and in O). 
  
We express QÄ]  and Q ]  in  function of the characteristics of the motion in the 
inertial reference system O [2]: 
    

QÄ] = 1
(1 − ��)1� . ����               and            Q ] = ��

¾. d1 − �� 

 
 (R is the radius of curvature of the path in O, and that radius in O’  is ¾d1 − ��.) 
 
The gravitational force is: 
 
       �⃗4 = �". Q⃗′ = �". (QÄ] . ;⃗Ä + Q ] . ;⃗ ) 
     

     = �". Å 1
(1 − ��)1� . ���� . ;⃗Ä + 1

(1 − ��)�� . ��¾ . ;⃗ Æ = ��� Ç �"d1 − �� . �⃗È 
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Finally  with: 
 �"d1 − �� . �⃗ = ¬⃗ 

 
We obtain:                                            

�⃗4 = �¬⃗��  

 ¬⃗  is the linear momentum of the particle relative to the inertial reference frame 
O.  It  is a measure for its inertia, for its ability to persist in its dynamic state  . 
 
7.6  THE INTERACTION BETWEEN TWO MOVING PARTICLES 
 
 

                                                                 Z=Z’ 

 

 

                                                                                   �⃗ 

                                                                                                       R 

                                                                            O’               
�⃗��       

�⃗��                         Y’ 

                                                                                   m1                                                       m2 

                                                                                                                                        Y      

                                               X’                              O   

                            

                                                X                                       

Fig 13 

 

    

Two particles  with rest masses m1 and m2 (fig 13) are anchored in the inertial 
reference frame O’  that is moving relative to the inertial reference frame O with 
constant velocity  �⃗ = �. ;̄T.  The distance  between the masses is R. 
 
Relative to O’ the particles are at rest.  According to Newton’s law of universal 
gravitation, they exert on each other equal but opposite forces: 
 �′ = ���] = ���] = �. �.�. ��¾� = 14. ?. ." . ��. ��¾�  

 
Relative to O  both masses are moving with constant speed � in the direction of 
the Z-axis.   From the transformation equations between an inertial frame O and 
another inertial frame O’, in which a point mass experiencing a force F’ is 
instantaneously at rest, we can immediately deduce the force  F  that the point 
masses exert on each other in O [2] : 
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� = ��� = ��� = �′. É1 − (�#)� = �′. d1 − �� 

 
We will now show that also this form of Newton’s law of universal gravitation 
perfectly can be deduced in the framework of GEM.  
 
       1. According to §4.4, at a point P - whose position is determined by the time 
dependent position vector 	⃗  -  the gravitational field  (��⃗�, ��⃗ �) of a particle with 
rest mass m0 that is moving with constant velocity �⃗ = �. ;̄T along the Z-axis of 
the inertial reference frame O  (fig 14) is determined by: 

 
 

��⃗� = − �"4?."	1 . 1 − ��
(1 − ��. -�g� R)1� . 	⃗ = − �"4?."	� . 1 − ��

(1 − ��. -�g� R)1� . ;⃗< 

 
         

��⃗ � = − �"4?."#�. 	1 . 1 − ��
(1 − ��. -�g� R)1� . (�⃗ × 	⃗)                                                 

 
 

With  � = c9,  the dimensionless speed of m0.   
 

 
 

                                                                 Z=Z’ 

                                                                                 R                           P                                                                                                    

                                                                        �⃗                     	⃗                                                                                                 

                                                              P1=O’                                                                                            

 

                                                                                                                                                                              

                                                                             O                                          Y 

                                                                                         

                                                          X                             

Fig 14 
 

 

 
       2.  In the inertial reference frame O of fig 13, the masses m1  and m2 are 
moving in the direction of the Z-axis with speed �.  m2  moves through the 
gravitational field generated by m1,  and m1  moves through that generated by m2. 
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According the above formulas, the magnitude of the gravitational field created 
and maintained by m1  at the position of m2 is determined by: 
 
 ��� = ��4?."¾� . 1d1 − ��      
 
                         ��� = ��4?."¾� . 1d1 − �� . �#� 

 
 

And according to the force law �⃗4 = �". Á��⃗� + (�⃗ × ��⃗ �)Â,  ���, the magnitude of 

the force exerted by the gravitational field (��⃗��, ��⃗ ��) on m2  - this is the attraction 

force of m1 on m2 - is:         
 ��� = ��. (��� − �. ���) 

 
After substitution: 
          ��� = 14?." . ����¾� . d1 − �� = ���] . d1 − �� 

 
In the same way we find:   
 ��� = 14?." . ����¾� . d1 − �� = ���] . d1 − �� 

 
We conclude that the moving masses attract each other with a force: 
  � = ��� = ��� = �′. d1 − ��

 
 
This result  perfectly agrees with that based on S.R.T. 
 
We also can conclude that the component of the gravitational  force due to the g-
induction is ��  times smaller than that due to the g-field.  This implies that, for 
speeds much smaller than the speed of light, the effects of the  β-information are 
masked.  
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It can be shown that the  β-information emitted by moving gravitating objects is 
responsible for deviations (as the advance of Mercury Perihelion) of the real orbits 
of planets with respect to these predicted by the classical theory of gravitation[3]. 
 
7.7  THE EQUIVALENCE MASS-ENERGY 
 
The instantaneous value of  the force �⃗ that acts on a particle with rest mass m0, 
that freely moves relative to the inertial reference frame O with velocity �⃗,  and 
the linear momentum  ¬⃗ = �. �⃗ of that particle are related by:  
 

�⃗ = �¬⃗��  

 
The elementary vectoral displacement �	⃗ of m0 during the elementary time 
interval dt is: �	⃗ = �⃗. �� 
 
And the elementary work done by �⃗during dt is[1]: 
  �Ê = �⃗. �	⃗ = �⃗. �⃗. �� = �⃗. �¬⃗ 
 
With  ¬⃗ = �. �⃗ = �"

É1 − (�#)� . �⃗ 

this becomes: 

�Ê = �". �. ��
Ë1 − (�#)�Ì1� = �

⎣⎢
⎢⎡ �"
É1 − (�#)� . #�

⎦⎥
⎥⎤ = �(�. #�) 

 
 

The work done on the moving particle equals, by definition,  the increase of the 
energy of the mass.  So, d(m.c2)  is the increase of the energy of the mass and  m.c2  
is the energy represented by the mass.  We can conclude: 
 
A particle with relativistic mass m is equivalent to an amount of energy of m.c2. 
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CHAPTER 8 
 

GRAVITATIONAL WAVES 
 
 

We will show that the existence of gravitational waves is embedded in GEM.  In 
the framework of the theory of informatons a gravitational wave is understood as 
the macroscopic manifestation of the fact that the “train” of informatons emitted 
by an oscillating source and travelling with the speed of light in a certain direction 
is a spatial sequence of informatons whose characteristic angle is harmonically 
fluctuating along the “train” what implies that the component of their g-index 
perpendicular to their velocity c

r and their β-index fluctuate harmonically in space. 
Gravitational waves transport gravitational energy because some of the 
informatons that constitute the “train” are carriers of energy.  They are called 
gravitons.   
 
 
8.1  THE WAVE EQUATION 
 
In free space  -  where L4 = {⃗4 = 0  -  the GEM equations are: 
                   1.  �����⃗� = 0                                                                                      
                   2.  �����⃗ � = 0                                                                                       
                    

3.  	
���⃗� = − x��⃗ �x�                                                                             
                   

     4.  	
���⃗ � = 1#� x��⃗�x�                                                                               
 
To attempt a solution of a group of simultaneous equations, it is usually a good 
plan to separate the various functions of space to arrive at equations that give the 
distributions of each. 
 
It follows from (3):     

	
�h	
���⃗�i = −	
� x��⃗ �x� ®      (3]) 
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Because[1] 	
�(	
��⃗) = +	Q�(����⃗) − Ó��⃗,   where Ó�is the Laplacian,    (3’) 
leads to:                                              

+	Q�(�����⃗�) − Ó���⃗� = −	
�(x��⃗ �x� ) = − xx� (	
���⃗ �) 

 
 
And taking into account (1) and (4):   
 

Ó���⃗� = 1#� . x���⃗�x��         (5) 

 
This is the general form of the wave equation.  This form applies as well to the g-
induction, as is readily shown by taking first the rotor of (4) and then substituting 
(2) and (3): 

Ó���⃗ � = 1#� . x���⃗ �x��         (5]) 
            
Solutions of this equation describe how disturbances of the gravitational field 
propagate as waves  with speed c. 
 
To illustrate this we consider the special case of space variation in one dimension 
only.   If we take the x-component of (5) and have space variations only in the z-
direction, the equation becomes simply: 
 x���_xW� = 1#� . x���_x��  

 
This equation has a general solution of the form 
 ��_ = Ô� �� − W#� + Ô� �� + W#�      (6) 

 
The first term of (6) represents the wave or function  f1  traveling with velocity c 
and unchanged form in the positive z-direction, the second term represents the 
wave or function f2  traveling with velocity c and unchanging form in the negative 
z-direction. 
 
8.2  GRAVITATIONAL WAVE EMITTED  BY A HARMONICALLY 
OSCILLATING PARTICLE 
 
In fig 15 we consider a point mass m that harmonically oscillates around the origin 

of the inertial reference frame O with frequency 7 = Õ�.3.   At the moment t it 
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passes at P1.  We suppose that the speed of the particle is always much smaller 
than the speed of light and that it is described by: 
 �(�) = M. #
- Ö � 

 
The elongation z(t) and the acceleration a(t) are then expressed as: 
 W(�) = PÕ . #
-( Ö� − 3�)        and       Q(�) = Ö. M. #
-( Ö� + 3�) 

 
 

                                                   Z 

                                                                                     ;⃗9                                                      
                                                                                           ;⃗�         #⃗                  

                                                                                             P          

                                        �⃗                                 	⃗� 

                                                                                                 	⃗                            ;⃗u9         

                                                       P1      m                                                           

                                                                

                                                                     R                                                                                   

                                                                   

                                                        O                                                                                 Y 
                                             
                                                                   φ                           X 

 
Fig 15 

 
We restrict our considerations about the gravitational field of m to points P that 
are sufficiently far away from the origin O.  Under that condition we can posit 

that the fluctuation of the length of the vector V�VA⎯B = 	⃗� is very small relative to 

the length of the time-independent position vector 	⃗,  that defines the position of 

P relative to the origin O.  In other words: we assume that the amplitude of the 
oscillation is very small relative to the distances between the origin and the points 
P on which we focus. 
 
8.2.1 The transversal gravitational field of a harmonically oscillating particle 
 

Starting from the complex quantity MÃ = M. ;Ø." -  that is representing �(�) -  �Ã�u9, 

the complex representation of the time dependent part of the transversal 
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component of ��⃗�, and �Ã��, the complex representation of  ���, at  P follows 

immediately from §5.2: 
 

�Ã�u9 = − �. MÃ4? . ;,Ø.Ù.< . ( 1.". #. 	� + Ú. Ö. 7"	 ). -�g R 

 
                                            

�Ã�� = − 7". �. MÃ4? . ;,Ø.Ù.< . ( 1	� + Ú. *	 ). -�g R              
 

where  * = Õ9   the phase constant.    Note that �Ã�� = Ã�ÛÜ9 . 

 
Thus, relative to O,   ���  and the time dependent part of  ��u9  are expressed as 

functions of the space and time coordinates as: 
 

���(	, R; �) = ��u9(	, R; �)#
= 7". �. M. -�g R . √1 + *�	�4?	� . #
-( Ö� − *	 + C + ?) 

 
  with   �+C = *	. 
 
So, an harmonically oscillating particle emits a transversal “gravitomagnetic” 

wave that propagates out of the mass  with the speed of light:  
 
In points at a great distance from the oscillating mass, specifically there where             	 >> �Ù = 9Õ,   this expression asymptotically equals:  

 
 ��� = ��u9# = 7". *. �. M. -�g R4?	 . -�g( Ö� − *	) 

 = 7". �. Ö. M. -�g R4?#	 . -�g( Ö� − *	) 
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                      = − 7". �. Q �� − 	#� . -�g R4?#	                                     
 
 
The intensity of the “far gravitational field” is inversely proportional to r, and is 
determined by the component of the acceleration of m, that is perpendicular to the 
direction of ;⃗9. 
 
8.2.2 The longitudinal gravitational field of a harmonically oscillating 
particle 
 

The oscillation of the point mass m along the Z-axis is responsible for the 
existence of a fluctuation of 	" = V"V, the distance travelled by the informatons 
at the moment t when they pass near P.  Within the framework of our 
approximations:  

 

	"(�) ≈ 	�(�) ≈ 	 − W(� − 	#). #
- R = 	. ß1 − W(� − 	#)	 . #
- Rà 

 
and    

( 1	")� ≈ 1	� . (1 + 2. W(� − 	#)	 . #
- R) 

 
From §5.2, it follows: 
    ��9 = − �4. ?. .". 	� − �4. ?. ..". 	1 . 2. W(� − 	#). #
- R 

 
So �Ã�9, the complex representation of the time dependant part of the longitudinal 
gravitationel field is:   
 

�Ã�9 = − �. MÃ4? . ;,ØÙ< . 2Ú. Ö. .". 	1 . #
- R 

 
We conclude that an harmonically oscillating point mass emits a longitudinal 
gravitational wave that - relative to the position of the mass - expands with the 
speed of light: 
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��9(	, R; �) = �. M4. ?. .". #. * . 2	1 . -�g( Ö� − *	) 

 

Because its amplitude is proportional to 
�<á,  at a great distance from the emitter 

the longitudinal field can be neglected relative to the transversal. 
 
8.3  GRAVITATIONAL WAVE EMITTED BY AN OBJECT WITH 
VARIABLE REST MASS  

Another phenomenon that is the source of a gravitational wave is the conversion 
of rest mass into energy (what per example happens in the case of radioactive 
processes).  To illustrate this, let us - relative to an inertial reference frame  - 
consider a particle with rest mass  m0  that - due to intern instability -  during the 
period  (0,  Δt)  emits EM radiation.   

This implies that that particle during that time interval  is emitting electromagnetic 

energy UEM carried by photons (and gravitational energy UGEM
• carried by 

gravitons) that propagate with the speed of light.   Between the moment  t = 0  and 
the moment t = Δt, the rest mass of the particle is, because of this 

event,  decreasing with an amount   
âãä(åâ»ãä)9:   from the value m0  to the 

value  m0'.  Because the gravitational field is determined by the rest mass, this 
implies that  if  t < 0   the source of  the gravitational field of the particle is  m0  and 
for t > Δt  it is  m0'.   It follows that at the moment  t  the gravitational field at a 
point  P  at a distance   r>c.t   is proportional to  m0 ,  and at a point at a distance  r 

< c.(t - Δt)   to  m0’.   

During the period (t, t+Δt) the gravitational field at a point at a distance r = 

c.t  changes from the situation where it is determined by m0 to the situation where 
it is determined by m0’ .  So, the conversion of rest mass of an object into radiation 
is the cause of a kink in the gravitational field of that object,  a kink that with the 
speed of light - together with  the emitted radiation - propagates  out of the object.  

We can conclude that the conversion of (a part of)  the rest mass of an object into 

radiation goes along with the emission by that object of a gravitational  wave. 

 
•  negligible in first approximation 
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The effect of the decrease - during the time interval (0, Δt)  - of the rest mass of a 
point mass on the magnitude of its g-field Eg  at the point P at a distance  r  is 
shown in the plot of fig. 16.   
 
 

                                  Ep 

                                                         (m0) 

                                                                                                                   (m0
’) 

 

                                   O                                                                                                            t 

                                                                                    çè       çè + Δt 
Fig 16 

       1. Until the moment  � = <9,  the effect of the conversion of rest mass into 

radiation has not yet reached P.  So, during the period (0, <9) the quantity of mass-

energy enclosed by an hypothetical sphere with radius r centered on the particle 
is still m0  (the remaining part of the rest mass + all the radiation that during the 
mentioned period has arisen from the conversion of rest mass).  From the first 
GEM equation it follows: 
  �� = �"4?.". 	� 

 

       2. From the moment  � = <9 + j�,  the radiation generated by the conversion 

of rest mass has left the space enclosed by the hypothetical sphere with radius r, 
that from that moment only contains the remaining rest mass m0’ . From the first 
GEM equation it follows:  

�� = �"′4?.". 	� 
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       3. During the time interval (
<9 , <9 + j�), the mass-energy enclosed by the 

hypothetical sphere with radius r is decreasing (not necessary linearly) because 
mass-energy flows out in the form of radiation.  So, during that period �� at P  is 
decreasing. 
 
8.4  ON THE DETECTION OF GRAVITATIONAL WAVES USING AN 
INTERFEROMETER 
 
Let   x  and  y   be the directions of the arms  L1  and  L2  of an interferometer, and 
let z be the direction perpendicular to the plane defined by the arms.  We consider 
the (optimized) situation where a uniform plane gravitational wave  (��⃗�, ��⃗ �) of 
sinusoidal form is travelling in the  z-direction.  We assume that the gravitational 
field ��⃗�  is in the x-direction and that the gravitational induction ��⃗ � is in the y-
direction.  If  EMAX  is the amplitude of the gravitational field, than  - according to 
GEM  -  ��⃗�  is given in magnitude by:  �� = ��êë. -�g( Ö� − *W)  with  * =Õ9 ,  and the magnitude of ��⃗ �  is given by: �� = �9  .    
 
When that gravitational wave is falling on the plane of the interferometer, the 
gravitational field ��⃗�  - being in the direction of L1 - will induce a longitudinal 
mechanical wave in the tube of the arm L1 what will result in a (very slight) 
oscillation of the mirror at the end.  The mirror at the end of  the arm L2 will not 
react on ��⃗� because that field is perpendicular to L2.  So, the effective length 
of  the light beam that is travelling through L1 will differ (in the manner of an 
oscillation) from the effective length of the light beam that is travelling through 
L2, and the detector will record that the outgoing and reflected beams are out of 
phase. It is clear that this can be generalized and that we can conclude that, 
according to GEM ,the interferometer will reacts on a gravitational wave. 
 
8.5  THE ENERGY RADIATED BY A HARMONICALLY OSCILLAT ING 
PARTICLE  
 
8.5.1  Poynting’s  theorem 
 
In free space a gravitational field is completely defined by the vectoral functions ��⃗�(`, b, W; �)  and  ��⃗ �(`, b, W; �).   It can be shown[2] that the spatial  area  G  
enclosed by the surface S - at the moment t -  contains  an amount of energy given 
by the expression: 
 

ì = O (.". ���2 + ���27"). �M4  
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The rate at which the energy escapes from G is:  
 

− xìx� = − O (.". ��⃗�. x��⃗�x�P + 17" . ��⃗ �. x��⃗ �x� ). �M 

According to the third  law of GEM:      

	
���⃗� = − x��⃗ �x�  

  
and according to the fourth law:      

	
� ��⃗ �7" = .". x��⃗�x�  

 
 
 So: 

− xìx� = O (��⃗ �7" . 	
���⃗� − ��⃗�. 	
� ��⃗ �7"). �M4 = O ���(��⃗� × ��⃗ �7" )4 . �M 

 
 

By application of the theorem of Ostrogradsky[1]:  ∭ ����⃗. �M = ∯ �⃗N4 . �@AB
, we 

can rewrite this as:  
 

− xìx� = F ��⃗� × ��⃗ �7" . �@AB
N  

 
 from which we can conclude that the expression  
 ��⃗� × ��⃗ �7" . �@AB

 

 
defines the rate at which energy flows in the sense of the positive normal through 
the surface element dS at P  .  
  
So, the density of the energy flow at P is: 
  ��⃗� × ��⃗ �7"  

 
 This vectoral quantity is called the “Poynting’s vector”.  It is represented by  V�⃗ : 
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V�⃗ = ��⃗� × ��⃗ �7"  

 
The amount of energy transported through the surface element dS in the sense of 
the positive normal during the time interval dt is: 
 

�ì = ��⃗� × ��⃗ �7" . �@AB . ��
 

  
 

8.5.2  The energy radiated by a harmonically oscillating particle – gravitons 
 
In §8.2 it is shown that an harmonically oscillating point mass m radiates a 
gravitomagnetic wave that at a far point P is defined by (see fig  13): 
           ��⃗� = ��u9 . ;⃗u9 = 7". �. Ö. M. -�g R4?	 . -�g( Ö� − *	). ;⃗u9 

                                          ��⃗ � = ��� . ;⃗� = 7". �. Ö. M. -�g R4?#	 . -�g( Ö� − *	). ;⃗�        
 
 
The instantaneous value of Poynting’s vector at P is:  
 
 

V�⃗ = 7". ��. Ö�. M�. -�g� R16. ?�. #. 	� . -�g�( Ö� − *	). ;⃗9 

 
 
The amount of energy that, during one period T , flows through the surface 
element dS that at P is perpendicular to the direction of the  movement  of the 
informatons, is: 
  

�ì = î V. ��. �@ = 7". ��. Ö�. M�. -�g� R16. ?�. #. 	�
Ä

" . ï2 . �@ 

 

And, with Ö = �.3Ä = 2. ?. 7:    

    

�ì = 7". ��. M�. -�g� R8# . 7. �@	�  
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�N<: = �ð is the solid angle under which dS is “seen” from the origin.  So, the 

oscillating mass radiates per unit of solid angle in the direction R, per period, an 
amount of energy  ñò: 
  

ñò = 7". ��. M�. -�g� R8# . 7          (1) 

      
This quantity is greatest in the direction perpendicular to the movement of the 
mass (R = 90°) and it is proportional to the frequency of the wave, thus 
proportional to the frequency at which the mass  is oscillating. 
 
We posit that the energy radiated by an oscillating point mass travels through 
space  in the form of particle-like packets of energy, called “gravitons” and that 
the energy ì� transported by a graviton is proportional to the frequency of the 
oscillator, so:  
 ì+ =  ℎ’. 7          (2) 
 
h’ plays the role of Planck’s constant in electromagnetism. 
 
A graviton can be understood as an information transporting a quantum of energy.   
 
From (1) and (2), it follows that the number of gravitons emitted per period and 
per unit of solid angle in the direction θ  by an oscillating point mass m is: 
 
 

��ò = ñò
ℎ′. 7 = 7". ��. M�. -�g� R8. ℎ′. #  

 
what is independent of the duration of a period.  
 
If we assume that the number of gravitons and the number of photons emitted by 
an oscillating charged particle (e. g. an electron) are of the same order of 
magnitude, it turns out that the value of h’ depends on the nature of the emitter 
and that the energy of a graviton is many orders smaller than that of a photon [2]. 
 
8.6 CONCLUSION 
 
The existence of gravitational waves is embedded in the GEM description of 
gravity.  According to the theory of informatons a gravitational wave is the 
macroscopic manifestation of the fact that the “train” of informatons emitted by 
an oscillating source and travelling with the speed of light in a certain direction is 
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a spatial sequence of informatons whose characteristic angle is harmonically 
fluctuating along the “train” what implies that the component of their g-index 
perpendicular to their velocity c

r and their β-index fluctuate harmonically in space. 
Gravitational waves transport gravitational energy because some of the 
informatons that constitute the “train” are carriers of energy.  They are called 
gravitons.  However, the energy quantum carried by a  graviton is small in such a 
way that it is very difficult to give experimental evidence of its existence. 
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APPENDIX 1  
 

THE  GRAVITATIONAL FIELD OF AN OBJECT 
MOVING WITH CONSTANT VELOCITY AND THE 

GEM EQUATIONS 
 
 
In fig. A-1 we consider the gravitational field of a particle  with rest mass m0  that 
is moving with constant velocity �⃗ = �. ;⃗T  along the Z-axis of an inertial 
reference frame O.  At the moment when the particle passes at the origin O, we 
set t = 0.   
 
 
                                                                    Z 

 
                                                                                             ;⃗�           ;⃗< 
                                                                                            
                                                                                                P     �⃗                              	⃗ 
                                                                 θ                                     ;⃗ô 
 
 

                                        O                                                Y 
                                                               õ 
                                                  X 

 
Fig. A-1 

 
According to §4.5 the gravitational field of that particle at P  is completely 
defined, in spherical coordinates (	, R, ö), by: 

        

��⃗� = �. -⃗� = − �"4?."	� . 1 − ��
(1 − ��. -�g� R)1� . ;⃗<                                          

 

��⃗ � = g. -⃗e = − 7". �"4?	� . 1 − ��
(1 − ��. -�g� R)1� . �. sin R . ;⃗�                             
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We will verify that (��⃗�, ��⃗ �) satisfy the Maxwell-Heaviside equations at an 
arbitrary point P: 
 
 
                           1.  �����⃗� = 0                          2.  �����⃗ � = 0                                              
                                                                                                                           
        

                               3.  	
���⃗� = − x��⃗ �x�                  4.  	
���⃗ � = 1#� . x��⃗�x�                             
 
 1.  ������⃗ � = ÷ 

 
From mathematics we know that: 
 

�����⃗� = 1	� . xx	 (	�. ��<) + 1	. -�g R . xxR (-�g R . ��ô) + 1	. -�g R . x���xö  

 
With:  

��< = − �"4?."	� . 1 − ��
(1 − ��. -�g� R)1�        and       ��� = ��� = 0   

 
We find:   �����⃗� = 0 
 
 2.  ���±��⃗ � = ÷ 
 
One can prove this in the same way as 1. 
 
 3.  ¤¥¦���⃗ � = − ²±��⃗ �²¦  
 
From mathematics we know that: 
 

	
���⃗� =    1	. -�g � . Ç xx� h��� . -�g �i − x���xö È . ;⃗<                                     
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   + 1	 . Ç 1-�g � . x��<xö − xx	 h	. ���iÈ . ;⃗�                            
 

+ 1	 . Ç xx	 (	. ���) − x��<x� È . ;⃗�                                    
 
With:  
 

��< = − �"4?."	� . 1 − ��
(1 − ��. -�g� R)1� ;  ��� = ��� = 0  and  �� = ��#� .". 7". �� 

       
We find: 

	
���⃗� = 3 7"�"4?	1 . 1 − ��
(1 − ��. -�g� �))� . ��. -�g � . #
- � . ;⃗�       (1) 

 

Next we calculate 
���⃗ ��� .   

 
Taking into account that  from the kinematics of  the particle along the Z-axis, it 
follows that: 
 x	x� = −�. #
- �             Qg�             xRx� = �. -�g �	  

 
We find: 
 x��⃗ �x� = − 3 7"�"4?	1 . 1 − ��

(1 − ��. -�g� �))� . ��. -�g � . #
- � . ;⃗�       (2) 

 
From (1) and (2) it follows: 

	
���⃗� = − x��⃗ �x�  

 
 
 4.  ¤¥¦±��⃗ � = �ø� . ²���⃗ �²¦   
One can prove this in the same way as 3. 
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APPENDIX 2 
 

THE GEM EQUATIONS ARE MATHEMATICALLY 
CONSISTENT 

 
 
At a point P of  a gravitational field - where L4 is the mass density  and {⃗4 is the 
density of the mass flow - ��⃗� and  ��⃗ � must obey to the GEM equations (the 
Maxwell-Heaviside equations): 
 1.  �����⃗� = − L4."                                                                            
 
                  2.  �����⃗ � = 0     
                     

   3.  	
���⃗� = − x��⃗ �x�                                                                            
                      

                     4.  	
���⃗ � = 1#� x��⃗�x� − 7". {⃗4 

                    

                 And:  .". 7" = �9: 
 
We will prove that these equations are mathematically consistent. 
 
1  THE CASE OF AN OBJECT WITH INVARIABLE REST MASS  
 
Because  ���(	
��⃗) = 0,  it follows from (4) that: 
        1#� xx� h�����⃗�i − 7". ���{⃗4 = 0      (4]) 

 
 

Substituting (1) in (4’) gives:        − 1#�." . xL4x� − 7". ���{⃗4 = 0 

 

And with 
�9:�k = 7", we obtain from (4’):  
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 xL4x� + ���{⃗4 = 0       (4") 

 
(4”) is nothing else but  the expression of the law of mass conservation.  Indeed: 
 
       - The rate at which mass is flowing out form a closed surface S  is: 
   ∯ {⃗4 . �@ABN      (A) 

 
        -  The rate of the decrease of the mass enclosed by S is ( V is the volume 
        enclosed by S): 
 − xx� O L4 . �M =  O ù− xL4x� ú . �M      (�)PP  

 
       Because of the law of mass conservation (A) = (B),  so 
  F{⃗4 . �@AB

N =  O (− xL4x�P ). �M       (5) 

 
       Ostrogradsky’s theorem (divergence theorem)  states that 

 

 ∯ �⃗. �@ABN =∭ ����⃗. �MP  
 

       Substituting in (5) gives:  
 O���{⃗4 . �MP =  O(− xL4x� ). �MP  

 
       It follows:          ���{⃗4 = − xL4x�  

         
       Or:   xL4x� + ���{⃗4 = 0 

 
We conclude that - in a system with invariable rest mass - the GEM  equations of 
the gravitational field are in line with  the law of mass conservation. 
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2. THE CASE OF AN OBJECT WITH VARIABLE REST MASS 
 
Let us consider - relative to an inertial reference frame - an object with rest 
mass  m0  that -  due to intern instability -  during the period ( 0,  Δt)  emits  EM 
radiation.   This implies that that object during that time interval is 
emitting  electromagnetic energy UEM carried by photons (+ gravitomagnetic 
energy• UGEM carried by gravitons) that propagate with the speed of 
light.  Because of that event, from the moment  t = Δt  the rest mass of the particle 

is decreased  with an amount  
âãäå(â»ãä)9:   to the value  m0'.   

Consider the surface S enclosing  the object in whole or in part   (V is the volume 
enclosed by S).  At a moment 0 < t < Δt: 
 
       - The rate of the decrease of the enclosed mass is: 
 − xx� O L4�M =  O ù− xL4x� ú . �M      (A)PP  

 
       -  {⃗4,  the density of the mass flow out from the enclosed volume at a point P 
          of  S has two components:  
 
                  1. {⃗4� describing the outflow of massive mass; 
                  2. {⃗4�  describing the outflow of mass in the form of energy.  If we 

                       represent the density of that energy flow by @⃗:   {⃗4� = N⃗9: 

          So:  

{⃗4 = {⃗4� + {⃗4� = {⃗4� + @⃗#� 

, 
           and  the rate at which mass-energy is flowing out from the  closed  surface 
           S   is:         ∯ {⃗4 . �@ABN      (B) 

 
(A) = (B)  because of the law of mass-energy conservation,  so 
 
 F{⃗4 . �@AB

N =  O (− xL4x�P ). �M 

 
  and       

 
• negligible in first approximation 
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     ���{⃗4 = − xL4x�        
	       xL4x� + ���{⃗4 = 0 

 
We conclude that in the case of a system with variable rest mass,  the GEM 
equations of the gravitational field are in line  with  the law of mass-energy 
conservation. 
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APPENDIX 3 
 

THE THEORY OF INFORMATONS AND 
ELECTROMAGNETISM  

 
 
The theory of informatons unifies gravitation with electromagnetism.  Indeed, 
with the theory of informatons it is also possible to explain the phenomena and 
the laws of electromagnetism[1],[2],[3].  It is sufficient to add the following rule to 
the postulate of the emission of informatons: 
 
C.  Informatons emitted by an electrically charged particle (a “point charge” q) 
at rest in an inertial reference frame,  carry an attribute referring to the charge 
of the emitter, namely the e-index.  e-indices  are represented as -⃗ü and defined 
by:  
 

1. The e-indices are radial relative to the position of the emitter.  They are 
centrifugal when the emitter carries a positive charge (q = +Q) and 
centripetal when the charge of the emitter is negative (q = -Q).  
 

      2. se, the magnitude of an e-index depends on Q/m, the charge per unit of mass 
         of  the emitter.  It is defined by: 
                                      -ü = 1!. ý" . �� = 8,32.10,2". �� �. ��. -. þ,� 

 
           where ý" = 8,85.10,���/�  is the permittivity constant. 
 
Consequently, the informatons emitted by a moving point charge q have at the 
fixed point P - defined by the time dependant position vector 	⃗  (see fig 5) -  two 
attributes that are in relation with the fact that q is a moving point charge, namely 
their e-index -⃗ü and their b-index -⃗�: 
 

-⃗ü = «� . 1!. ý" . ;⃗< = «� . 1!. ý" . 	⃗	        and        -⃗� = #⃗ × -⃗ü# = �⃗ × -⃗ü#  

                                     
 

Macroscopically, these attributes manifest themselves at P as, respectively the 
electric field strength  (the e-field) ��⃗  and the magnetic induction (the b-induction) ��⃗ . 
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