Antoine Acke

GRAVITOELECTROMAGNETISM

EXPLAINED BY

THE THEORY OF INFORMATONS

Edition 2021



About this book*

This book focusses on the explanation of the ga#wenal interactions and
phenomena as they are described and understoodcheinframework of
gravitoelectromagnetisfGEM). GEM is a classical field theory, that is stagti
from the idea that the gravitational field must B®morphic with the
electromagnetic field in a vacuum. It is an exiemsof Newtonian gravity
because it takes into account, in addition to tpesition, the kinematics of the
gravitating objects. In this book it is shown tlEM perfectly can be explained
by the “theory of informatons”

The theory of informatonglevelops the idea that any material object matsfe
itself in space by the emission - at a rate progoal to its rest mass - of
informatons mass and energy less granular entities rushiray avith the speed
of light and carrying information regarding the pias and the velocity of their
emitter. This implies that any material objectisthe center of an expanding
cloud of informatons that can be identified asghevitational field linked to that
object.

It is shown that the gravitational field is a deality always having a field- and
an induction- component simultaneously createthby common sources: time-
variable masses and mass flows, that the Maxwediviside equations are the
expressions at the macroscopic level of the kinesaf the informatons, that the
gravitational interaction is the effect of the félcat an object in a gravitational
field tends to become “blind” for that field by @terating according to a Lorentz-
like law, and that an accelerated object is thecoaf gravitational radiation.
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CHAPTER 1

INTRODUCTION

Daily contact with the things on hand confrontsaith their substantiality An
object is not just form, it is also matter. It égkspace, it eliminates emptiness.
The amount of matter within the contours of a ptgisbody is called itsnass.
The mass of an object manifests itself when itradts with other objects. A
fundamental form of interaction igyfavitatiori’. Material objects (fhassey
attract each other and, if they are free, they ntoveach other.

In the framework ofthe classical theory of field6 Newtonian gravit}), the
gravitational interactions are described by int@dg the field concept. Each
material object manifests its substantiality byatireg and maintaining a vector

field, characterized by the vectoral quanﬁglthat has a value at every point of

space and time and is thus - relative to an mlemference fram® - regarded
as a function of space and time coordinates. Aacheobject in that field
experiences a tendency to accelerate. The fieloryhconsiders the gravitational
field as the entity thanediatesn the gravitational interactions.

Newtonian gravity is further developed and extenbig®liver Heavisidé' and

Oleg Jefimenkd. Their work results in ththeory of gravitoelectromagnetism
(GEM). In GEM the description of the gravitationalldiés starting from the idea
that it must be isomorphic with the electromagnetie. This implies that the

gravitational field must be characterized by twatoeal quantitiesﬁg - the
gravitational fieldor theg-field - and§g — thegravitational inductionor theg-

induction- that are analogue to respectively the eleteid E and the magnetic
inductionB. The gravitational inductioﬁg IS representative for the kinematics

of the gravitating objects, a phenomenon that watstaken into account in
Newtonian gravity. The starting point of GEM alsoplies that the relations

betweenE, andB, (the GEM equations or thdaxwell-Heaviside equatiohs
must be analogue to Maxwell’'s laws. Neither thepgaions nor their solutions
indicate an existence of causal links betwdgnand B,. Therefore, in the

framework of GEM it must be concluded that a g@ttnal field is a dual entity
always having a “field-" and an “induction-” compamt simultaneously created
by their common sources: time-variable massesnaass flows.

Although GEM describes the gravitational phenomaracorrect and coherent
manner, it doesn’'t create clarity about the ptaishature of gravity: the



gravitational field is considered as a purely mathgcal construction. In what
follows we develop the idea that, if masses catuénice each other “at a
distance”, they mustin one way or another exchataa. We assume that each
mass emits information relative to its magnitude s position, and that it is able
to “interpret” the information emitted by its nelgburs. In this way we propose
a physical foundation of GEM by introducimgformationas the substance of a
gravitational fieldf?BM6,

We start from the idea that a material object nemt# itself in space by the
emission - at a rate proportional to its rest madgsnass and energy less granular
entities that, relative to an inertial referencanie, are rushing away with the
speed of light and are carrying information regagdithe position (@-
informatiori) and regarding the velocity g<informatior) of their emitter.
Because they transport nothing than information, @&l these entities
“informatons. The gravitational field of a material objectithen be understood
as an expanding cloud of informatons, that formendivisible whole with that
object.

In the postulate of the emission of informatpm&e define an informaton by its
attributes and determine the rules that govermthission by a point mass that is
anchored in an inertial reference fra@e

The first consequence of that postulate is thatiatpnass at rest i@ - and by
extension any material object at rest - is the@wf an expanding cloud of
informatons, that - at an arbitrary poiht is characterised iye density of the
flow of g-informationat that point. That vectoral quantity can be tdied with

Eg, the gravitational field strength, and the cloud ioformatons with the
gravitational field inO.

A second consequence is that the informatons eimiyea point mass that is
moving relative tdO, constitute a gravitational field @ that is characterised by

two vectoral quantities:E,, the density of the g-information flow ari}, the

density of theg-information cloud We will show that the relations between these
two quantities (the laws of GEM) - the macroscapipressions of the kinematics
of the informatons - are the gravitational analagoieMaxwell’'s electromagnetic
laws.

Next we explain the gravitational interaction betwwanasses as the response of
an object to the disturbance of the symmetry dfateper” gravitational field by
the field that, in its direct vicinity, is creatadd maintained by other masses. And
finally we examine the emission of energy by aretsrating mass.



The starting point of GEM and of the theory of imh@tons differs fundamentally
from the starting point of GRT, because space mne don’t play an active role
neither in the description of gravity by GEM nor tine explanation of the
gravitational phenomena and laws by the theorpfofrmatons. In those contexts
space and time are elements of the descriptioatofre that do not participate in
the physical processes. We still mention that Gtaslbeen discussed within the
framework of GRT by a number of authdr€l. They came to the conclusion that
the gravitational analogues to Maxwell’'s equati(the GEM equations) are valid
in the weak field approximation.
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CHAPTER 2

THE POSTULATE OF THE EMISSION OF
INFORMATONS

The “theory of informatons” explains the gravitaiab (and the electromagnetic)
interactions and phenomena by the hypothesis thi@trfnatiori is the substance
of gravitational (and of electromagnetic) fields.

The constituent element of that substance is caltetihformatori. The theory
starts from the idea that any material object nemtsf itself in space by the
continuous emission - at a rate proportional torétst mass - of informatons:
granular mass and energy less entities rushing awtaythe speed of light and
carrying information about the positiongfinformatior) and about the velocity
(“ B-informatior?) of their emitter.

In this chapter the mechanism of the emission f@frmatons by a point mass at
rest will be described, and the informaton willdefined by its attributes.

2.1 PRELIMINARY DEFINITIONS

A material body occupies space, its surface esslaosatter. The amount of
matter within its contours is called itsass. According to the field theory, any
material body is the source of a gravitationaldighat at a sufficiently large
distance is independent of the form of the bodys Tiar field” can be calculated
by reducing the body to a mathematical point in chiall the mass is
accumulated. Such a point is calledparticle’ or a “point mass”and it will be
graphically represented by a little sphere. If @@ calculate the gravitational
field generated by a point mass, integral calcdelsers the methods to calculate
the gravitational field generated by any mater@dyo This justifies the fact that
we in the first instance focus on the emissiomfafrmatons by a point mass.

The phenomena that are the subject of this bookiarated in spacetime: they
are located in “space” and dated in “time”.

1. In the context of the theory of informatogsaceis conceived as a three-
dimensional, homogeneous, isotropic, unlimited anapty continuum. This
continuum is called the “Euclidean space” becabhaewhat there geometrically
Is possible is determined by the Euclidean geomé&gyanchoring a standardized



Cartesian coordinate system to a reference bodyhs@rver can - relative to that
reference body - localize each point by three coatdsx, v, z.

2. In the same context we defitiene as the monotonically increasing real
guantityt that is generated by a standard clodk a Cartesian coordinate system
a standard clock links to each event a “momeittiis is a specific value df-
and to each duration a “period” or “time intervathis is a specific increase of
The introduction of time makes it possible for thigserver to express, in an
objective manner, the chronological order of eventa Cartesian coordinate
system.

A Cartesian coordinate system together with a stahctlock is called a
“reference frame”.We represent a reference frame2a6Y A T) or shortly a®.

A reference frame is called amértial reference framkeif light propagates
rectilinear (in the sense of the Euclidean geometwth constant speed
everywhere in the empty space linked to that fraffleis definition implies that
the space linked to an inertial reference framanshomogeneous, isotropic,
unlimited and empty continuum in which the Euclidegeometry is valid. A
reference fram@®’ moving relative to an inertial reference fra@es itself also
an inertial reference frame. The coordinates otaent linked to the inertial
framesO andO’ are related by the Lorentz transformation.

2.2 THE CONCEPT OF GRAVITATIONAL INFORMATION
Newton’s law of universal gravitatifhmay be expressed as follows:
The force between any two particles having massemdim separated by a

distance r is an attraction working along the lijpening the particles and has a
magnitude

where G is a universal constant having the sameevédr all pairs of particles.

This law expresses the basic fact of gravitaticemmely that two masses are
interacting “at-a-distance”: they exert forces ore @another even though they are
not in contact.

According to Newton’s IavﬁB, the force exerted by a partide- with massm, -
on a particlé - with massn - is pointing to the position &and has a magnitude:

* The operation of a standard clock is based orctlumting of the successive cycles of a
periodic process that is generated by a devicdensie clock.
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The orientation of this force and the fact thas directly proportional to the mass
of A and inversely proportional to the square of théadise fromA to B, implies
that particleB must receivenformationabout the presence in space of particle
particleA must send information tB about its position and about its mass. This
conclusion is independent of the position and theswfB; so we can generalize
it and posithat

A particle manifests itself in space by emittinfpimation about its mass and
about its position.

We consider that type of information as a subsdhetement of nature and call it
“gravitational informatiori or “g-informatiori. We assume that g-information is
transported by mass and energy less granularestitat rush through space with
the speed of lightd]. These grains of g-information are callefbrmatons

2.3 THE POSTULATE OF THE EMISSION OF INFORMATONS

A material object manifests its presence in spagecdntinuously emitting

informatons. The emission of informatons by a malte@bject anchored in an
inertial reference fram®, is governed by thepbstulate of the emission of
informatons.

A. The emissiorof informatons by a patrticle at rest is governgdhe following
rules:

1. The emission is uniform in all directiomisspace, and the informatons
diverge with the speed of light (c = 3210/s) along radial trajectories relative
to the position of the emitter.

2. N =°:;Z, the rate at which a particle emits informatgnss time

independent and proportional to the rest magsofmthe emitter. So there is a
constant K so that:

N == K.m()

3. The constant K is equal to the ratiohw square of the speed of light (c)
to the Planck constant (h):

* We neglect the possible stochastic nature of theseom, that is responsible for noise on the
guantities that characterize the gravitationabifi®o,N is the average emission rate.
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2

C
K =—=13610"kg™".s™"

B. We call the essential attribute of an informatsmgy-index.The g-index of an

informaton refers to information about the positafnts emitter and equals the

elementary quantity of g-informatiorit is represented by a vectoral quangjy
1.5, points to the position of the emitter.

2. The elementary quantity of g-informatisin

1
Sg = =6,18.107%9m3.s71
K.ng

wheren, = ﬁ = 1,19.10°kg.s?>.m™3, G being the gravitational constant.

Rule A.1 is the expression of the hypothesist@space is an homogenous and
Isotropic continuum in which the gravitational pbemena are travelling with the
speed of light. Rule A.2 posits that the rate/faich a particle emits informatons
Is @ measure for its rest mass and rule A.3 imphesfact that, when a particle
absorbs (emits) a photanv, its rest mass is increasing (decreasing) with an
hv . _ : -

amountc—2 while its emission rate is increasing (decreaswgf) an amount.
Rule B.1 and rule B.2 respectively express thesftmat the gravitational field of

a particle always points to the position of therseuof that field and that the
gravitational force between any two particles delsern a universal consta@t

To summarize, each material object manifestsfiilsedpace by the emission of
informatons, it is a source informatons. Infornmatoare grains of g-information
and, as such, the constituent elements of grawiattifields. In the context of the
postulate of the emission of informatons they ammmetely defined by their g-
indexs,. We will representan informaton as a quasi-infinitely small spinning

sphere, moving with velocit§ and carrying a vectay,.

In what follows we will show that informatons mascopically manifest
themselves ilﬁg andﬁg, the vectoral quantities that mathematically ebtarize
gravitational fields; and in the laws of GEM there manifestations of their
kinematics. We will also show that informatons &ea by an accelerated point

mass can be carriers of a quantum of energy. ®hbination of an informaton
with a packet of energy appears to the observar‘gsaviton”.
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It also is possible to explain electromagnetisnti®ytheory of informatorsEl,

In that context they macroscopically manifest thelwes a€ andB , the vectoral

guantities that characterize an EM field, and inxiell's laws that are

manifestations of their kinematics. In the contekttM a “photon” can be
interpreted as a combination of an information (therier) and a quantum of
energy.
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CHAPTER 3

THE GRAVITATIONAL FIELD OF AN OBJECT AT
REST

In what follows we will show that the emission nfarmatons by an object at rest
macroscopically manifests itself in tigeavitational field of that object The
substance of that gravitational fieldggnformation. The gravitational field of an

object at rest is completely characterized by aorabquantityﬁg, called theg-
field. Eg has a value at every point of space and is thteative to an inertial
reference fram@® - regarded as a function of the space coordingkés. certain
point P, Eg Is the density of the g-information flguassing nedP. The relation
betweenﬁg and the rest mass of its source (i.e. the firstaggn of Maxwell-
Heaviside) is the expression of the lancohservation of g-information

3.1 THE GRAVITATIONAL FIELD OF A PARTICLE AT REST

In fig 1 we consider a particle op6int masswith rest massn, that is anchored
at the origin of an inertial reference frafe According to the postulate it
continuously emits informatons in all directionsspfce.

4

Fig 1

The informatons that with velocity
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pass near a fixed poiRt- defined by the position vectdr- are characterised by
their g-indexs,:

The rate at which the point mass emits g-infornmatsothe product of the rate at
which it emits informatons with the elementary ¢prmation quantity:

my

N.s, =
g No

Of course, this is also the rate at which it seqxtsformation through any closed
surface that surroundsy: it is theintensity of the g-information-flonthrough
any closed surface that encloses

The emission of informatons fills the space aromgdvith an expanding cloud
of g-information. This cloud has the shape ofleesp whose surface moves away
with the speed of light from the centdethe position of the point mass.

1. Within that cloud there is stationary state Because for each spatial
region, the inflow of g-information equals the dowMf, each spatial region
contains an unchanging number of informatons auas #éhconstant quantity of g-
information. Moreover, the orientation of the ghites of the informatons passing
near a fixed point is always the same.

2. That cloud can be identified with @ontinuum Each spatial region
contains a very large number of informatons: thénfgrmation is like
continuously spread over the volume of the region.

The cloud of g-information surrounding O can bentifeed as the gravitational
field or the g-field of the point mass.m

Without interruption “countless” informatons areshing through any - even a
very small - surface in the gravitational field: wan describe the motion of g-
information through a surface as@ntinuoudiow of g-information.

We know already that the intensity of the flow ehfprmation through a closed
surfacethat surrounds O is expressed as:

mgy

N.s, = —
g No
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If the closed surface is a sphere with radiugheintensity of the flow per unit
areais given by:
my

4.1.1r%.1,

This is thedensity of the flow of g-informaticet each poinP at a distancer
from my (fig 1). This quantity is, together with the oriation of the g-indices
of the informatons that are passing rneéarharacteristic for the gravitational field
at that point. Thus, at a poiRt the gravitational field of the point mass is

unambiguously defined by the vectoral quarﬁig,y

E = N 23 ___ Mo g =——-—9%
b 4.mqr29 4.1.1n9. 12" 4.7.10.73

my

-

This quantity is theyravitational field strengttor theg-field strengthor theg-
field. In any point of the gravitational field of theipt masan, the orientation

of Eg corresponds to the orientation of the g-indicethefinformatons which are
passing near that point. And the magnitudeﬁgfis the density of the g-

information flowat that point. Let us note thﬁ_g IS opposite to the sense of
movement of the informatons.

Finally, let us consider a surface-elemd8tat P (fig 2,a). Its orientation and

magnitude are completely determined by the sun‘/amaerd? (fig 2,b). By

—d®;, we represent the rate at which g-informatiowfidhroughdSin the sense
of the positive norma#,, and we call the scalar quantidyp; the elementary g-
flux through dS

- >
d®; = E;.dS = Ej.dS.cosa

- -2 -
én dS =dS.e,

<
<

Fig 2,a Fig 2,b
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For an arbitrary closed surfaBghat surroundsn, the outward flux (which we
obtain by integrating the elementary contributiadidg over § must be equal to
the rate at which the mass emits g-informationusth

— —_—> m()
¢G=#Eg. §=-—2

This relation is the expression of the conseovetdf g-information in the case
of a pointmass at rest.

3.2 THE GRAVITATIONAL FIELD OF A SET OF PARTICLES AT REST

We consider a set of particles with rest massgs.,m,...m, that are anchored
in an inertial reference fram®. At an arbitrary pointP, the flows of g-

information who are emitted by the distinct masses defined by the
gravitational fieldstyy, ..., Eyq, ..., Egy . —d®,, the rate at which g-information
flows through a surface-elemadfatP in the sense of the positive normal, is the

sum of the contributions of the distinct masses:

n

_do, = Z ..d3) =

—

ds

Mz

g.

So, theeffective density of the flow of g-information aftle effective g-field )
is completely defined by:

We conclude:

At a point of space, the g-field of a set of pmasses at rest is completely defined
by the vectoral sum of the g-fields caused bylikknct masses.

Let us remark that the orientation of the effectivield has no longer a relation
with the direction in which the passing informat@me moving.

One easily shows that the outward g-flux througiioged surface in the g-field
of a set of anchored point masses only dependseosurrounded masses:

_#Eglfg=%
Mo
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This relation is the expression of the conservatibg-information in the case of
a set of point masses at rest.

3.3 THE GRAVITATIONAL FIELD OF A MASS CONTINUUM AT REST

We call an object in which the matter in a timegpedndent manner is spread over
the occupied volume, mass continuumAt each pointQ of such a continuum,
the accumulation of mass is defined by tha$3 densityp;. To define this scalar
guantity one considers the maks of a volume elemerdVthat contain®). The
accumulation of mass in the vicinity Qfis defined by:

dm

be =Gy

A mass continuum - anchored in an inertial refeedn@me - is equivalent to a set
of infinitely many infinitesimal small mass elemgdin. The contribution of each

of them to the field strength at an arbitrary pdiris dE,. E,, the effective g-

field atP, is the result of the integration over the voluoh¢he continuum of all
these contributions.

It is evident that the outward g-flux through ased surfacé& only depends on
the mass enclosed by that surface (the enclosedreos)):

5 = 1
G5, B [[pear
s Mo v

That relation is equivalent with (theorem of Ostamtgky?):

This is the expression of the conservation of grmétion in the case of a mass
continuum at rest

Furthermore, one can show tRat rotﬁg = 0, what implies the existence of a
gravitational potential functiolj, for which:

Eg = —gradly
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3.4 CONCLUSION

The gravitational field of a particle at rest foras indivisible whole with that
particle. It is completely characterized by the/gbal quantity “gravitational
field” or “g-field”. This quantity is representdry the position dependent vector

Eg, the density of the flow of g-information at afiarary pointP.

The substance of the gravitational field is “g-mmh@tion” and its constituent

element is the “informaton”. This implies that tpavitational field is granular,

that it continuously regenerates, that it showstélations, that it expands with the
speed of light, that gravitational phenomena pragagvith that speed and that
there is conservation of g-information at everynpoif the gravitational field.
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CHAPTER 4

THE GRAVITATIONAL FIELD OF AN OBJECT
MOVING WITH CONSTANT VELOCITY

To characterize the gravitational field of a movoigect we need a vector field
with two components: thg-field Eg and theg—inductionﬁg that respectively

define the density of the flow of g-information atte density of the cloud @
information at every point of space and time. \Wevgthat the gravitational field
of an object moving with constant velocity is gawed by the Maxwell-Heaviside
equations and that these equations in no way &e#utetconclusion that there are

causal relations between the changes in time andpatial variations ofg and
§g. The gravitational field is a dual entity havingfiald and an induction
component.

4.1 THE g-FIELD OF A PARTICLE MOVING WITH CONSTANT
VELOCITY

(b)

Fig 3

In fig 3,a, we consider a particle with rest magsthat is moving with constant
velocity v = v.e, along theZ-axis of an IRFO. At the momentt = 0, it passes
through the origirD and at the moment=t through the poinP;. It is evident
that:

OP, =zp =v.t
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P is an arbitrary fixed point i© with space coordinates, (y, z). . Its position

relative to the moving particle is determined by time dependent position vector
—

F == P1P
The g-field atP is the vectoral quantitﬁg that at that point characterizes the

density of the flow of g-information. The magnitmnfe’:"_)g IS the rate per unit area
at which g-information aP flows through an elementary surface perpendicular
to the direction of;,.

We introduce the IRP’ (fig 3,a)whose origin is anchored to the moving particle
and we assume that=t" =0 when it passes through

Relative toO’ where the particle is at rest at the ori@in(fig 3,b), the position

—_—
of the pointP is determined by the time dependent position vedtbe= 0'P so
that inO’ the space coordinatesBfare &',y’, z').

Because the particle is at resOh E)é - the density of the g-information flow at
P relative toO’ is — according to 83.1 defined by the vectoral gtyan

g 4.1.1y.72" " 4ner'3’
The components d; in O’, are:
El. A6 = — o x'
g% 4Amtn,r'3
EI — mO !
!
gy 4Amtnr'3
mg
Egz = — =z
4ntner

They determine aP the densities of the flows of g-information respesty
through a surface elemeay’.dz’ perpendicular to th¥’-axis, through a surface
elementdz’.dx’ perpendicular to th¥’-axis and through a surface elemaxitdy’
perpendicular to th&'-axis. Thus, the rates at which g-information ®mMing
through these different surface elements (the xe8yatP are:

my. x'

Ejy.dy'.dz' = — .dy'.dz'

4mnr'3
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!

my.y

Egy.dz'.dx' = — pre— .dz'. dx'
’ ’ ’ mO'Z, / ’
Ejy.dx'.dy = _4m70r’3 .dx'.dy

Informatons propagate at the speed of light that free space - has the same
value in all inertial reference frames. That ireplthat the rate at which g-
information flows through a surface elemd&tin O can be derived from the rate
at which it flows through a surface elemée&’ in O’ by applicating the Lorenz
transformation equations.

 The Cartesian coordinatesPin the frame®© andO’ are related to each
other by*:

X' = X y =y g =20 _ ZT%R
V1-8%  1-p?
dz

: o . -
The line elements by: dx’ =dx dy’=dy dz = N
* And further:

. \J1—p2sin?6
=T.
J1 -2

So relative tdO, the rates at which the moving particle sendsfgrmation in
the positive directiorthrough the surface elemernhg.dz dz.dx anddx.dy atP

are:

r

m 1-—p?

~2 0 B 5. x.dy.dz
T (1 — B2.5in? 9)2
m 1-p?

— ° B 3.Y.dx.dz

my 1_[))2

— 3 .(Z — Zpl).dx. dz
4N (1 _ g2 sin 0)2

w

By definition, the densities & of the flows of g-information in the direction of
the X-, the Y- and theZ-axis are the components of the g-field causedhiy t

moving particlem, atP in O. So:
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my 1-p2
Egx =  Amnr3 3%
Mo (1 - B2.sin2 0)2

E. = mg 1-p2 y
gy — 3" 3"
40T (1 _ g2 sin 9)2
m 1— p?
E;, = 0 5-(Z2—2p,)

.
40T (1 _ g2 sin 9)2

From which it follows that the g-field caused by tharticle at the fixed poirit
IS:

—->=_ m() 1_ﬂ2 Fz_ m() 1_ﬁ2 é>
? 4mror (1 — B2.sin? 9)% 4mror? (1 — p2.sin? 9)% '
We conclude:

A particle describing a uniform rectilinear moverhaelative to an
inertial reference fram@®, creates in the space linked to that frame a time
dependent gravitational fieI(E_)g, the g-field at an arbitrary point P, points
at any time to the position of the mass at that smdhand its magnitude
IS:

E my 1-p?

= , 1)
g 2 3 (
40T (1 _ g2 sin2 9)2

In 83.1 we concluded that for an arbitrary closedaxeS that surroundsn, a
particle at rest relative to an IRF; the outward flux must be equal to the rate at
which the mass emits g-information. Thus:

* The orientation of the g-field implies that therglices of the informatons that at a certain
moment pass ned, point to the position of the emitting mass at tim@ment and not to its

light delayed position.
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This relation, the expression of conservation offgrmation, applies also
in the case of a particle g)moving with constant velocity relative@

Indeed, the relation applies in the proper IRFof my (the IRF anchored toy)
and because informatons (the carriers of g-infalnatravel with the same speed
in all inertial reference frames, the rate at whighnformation flows through a
surface elemerdSdoesn’'t depend on the IRF relative to whit$is described.

If the speed of the mass is much smaller thangbedof light, the expression (1)
reduces to that valid in the case of a mass at Tds$ non-relativistic result could
directly be obtained if one assumes that the digpheent of the point mass during
the time interval that the informatons need to mivwen the emitter td® can be
neglected compared to the distance they travehduhat period.

4.2 THE EMISSION OF INFORMATONS BY A PARTICLE MOVI NG
WITH CONSTANT VELOCITY

In fig 4 we consider a particle with rest mans that is moving with constant
velocity v along theZ-axis of an inertial reference fran@ Its instantaneous
position (at the arbitrary momett is P;. The position oP, an arbitrary fixed

point in space, is defined by the vecdfos ﬁ This position vector - just like
the distance and the angl® - is time dependent because the positioR,06
constantly changing.

The informatons that - with the speed of lightt-thee moment are passing near
P, are emitted whem, was atPy. Bridging the distanc@,P = r, took the time

interval At = %0
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During their rush fronP, to P their emitter, the particle, moved frdfg to P;:
POP1 - vAt

1. ¢ the velocity of the informatons, points in theediion of their
movement, thus along the radigs?;

2. 5,4, their g-index, points t81, the position ofry at the moment This is

an implication of rule B.1 of the postulate of tkenission of informatons,
confirmed by the conclusion of §4.2.

The lines carrying s; and¢ form an angledd. We call this angle - that is
characteristic for the speed of the point mas® -“tharacteristic angléor the
“characteristic deviatioh The quantitys; = s,.sin(46), referring to the speed

of its emitter, is called thecharacteristic g-informatiohor the f -information”
of an informaton.

We conclude that an informaton emitted by a movpagticle, transports
information referring to the velocity of that pafté. This information is
represented by itggtavitational characteristic vectoéror its “f -index §ﬁ that
is defined by:

¢ X 5,

Sp =
s c

- TheB-index is perpendicular to the plane formed bypath of the
informaton and the straight line thatriesrthe g-index, thus it is
perpendicular to the plane formed bygbmt P and the path of the
emitter.

- Its orientation relative to that planalefined by the “rule of the
corkscrew”.

- Its magnitude isg = s,.sin(A8), thef -information of the
informaton.

In the case of fig 4 th@-indices have the orientation of the positKaxis.
Applying the sine-rule to the triangi®P:P, we obtain:

sin(46) sin6
v.At  c.At
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From which it follows:

v
Sgp = sg.z.sme =Sg.B.5in0 = 54.8,

B, is the component of the dimensionless velog@ty= E perpendicular tg,

Taking into account the orientation of the diffareectors, the-index of an
informaton emitted by a point mass moving with ¢ansvelocity, can also be
expressed as:

- -
UXSg

Sp =
A c

4.3 THE GRAVITIONAL INDUCTION OF A PARTICLE MOVING
WITH CONSTANT VELOCITY

We consider again the situation of fig 3. All infeatons indV - the volume
element aP - carry both g-information an@-information. TheB-information
refers to the velocity of the emitting mass ancefwesented by therindicessy:

§ = =
g c

If nis the density aP of the cloud of informatons (number of informatqres
unit volume) at the moment the amount oB-information indV is determined
by the magnitude of the vector:

- - - -

. C XS, VXS,
n.sﬁ.dV = n. .dV = n.
C c

And the density of th@-information (characteristic information per untlyme)
atP is determined by:

We call this (time dependent) vectoral quantitizattwill be represented kﬁ}g -
the “gravitational inductiori or the ‘g-induction” atP°:

* also called “gravitomagnetic induction”
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- Its magnitud®, determines the density of tBenformation atP;

- Its orientation determines the orientatiéhe-indicess, of the
informatons passing near that point.

So, the g-induction caused by the moving nmasgfig 3) at P is:

N - the density of the flow of informatonsf(the rate per unit area at which the
informatons cross an elementary surface perpeladido the direction of
movement) - anch - the density of the cloud of informatons Rt(number of
informatons per unit volume) - are connected byréhation:

With Eg = N.s;, we can express the gravitational inductioR as:

—

- v R vVXE,
Bg=c—2><(N.Sg)= 2

-

Taking the result of 84.2 into account, namely:

E, = - d 7

g~ 3" 3"
40T (1 _ g2 sin2 9)2

We find:
- m() 1 _ﬁz - e
By = Amnc?.r3’ - (VXT)

(1 — B2.sin%? )2

We define the constant, = 9,3410%" m.kg! as:

1
o= c%. 1Mo

And finally, we obtain:
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- Vo.mo 1_ﬁ2
g:

- 5. (P X V)
4T B2 sin2 0)2
§g atP is perpendicular to the plane formedmwnd the path of the point mass;
its orientation is defined by the rule of the caresv; and its magnitude is:

Vo.mo 1_ﬂ2
g =

> z.v.sin 6
AT (1 Z B2.sin2 0)2
If the speed of the mass is much smaller thangbedof light, the expression for
the gravitational induction reduces itself to:

§ VO' mO (—> X —>)
= AT v
9 4nmrs

This non-relativistic result could directly be obid if one assumes that the
displacement of the point mass during the timervatithat the informatons need

to move from the emitter tB can be neglected compared to the distance they
travel during that period. This means that for atitbtns wherev < ¢, in the
previous calculation the formula

- my
E, =

-

_4.7r.n0.r3'r

can be used to express the g-field.

Soifr«<c, §g atP is perpendicular to the plane formedmgand the path of

the point mass; its orientation is defined by thke rof the corkscrew; and its
magnitude is:
_ Vp-My

9 4nr?

.v.sin@

4.4 THE GRAVITATIONAL FIELD OF A PARTICLE MOVING WI  TH
CONSTANT VELOCITY

A particle mp, moving with constant velocity = Vi€, along theZ-axis of an

inertial reference frame, creates and maintairexpanding cloud of informatons
that are carrying both g- affdinformation. That cloud can be identified with a
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time dependent continuum. That continuum is catlfexravitational field of
the point mass. Itis characterized by timoe dependent vectoral quantities: the

gravitational field (shortg-field) Eg and the gravitational induction (shog-
inductior) B,

1. With N the density of the flow of informatons Rt(the rate per unit area
at which the informatons cross an elementary sarfaerpendicular to the
direction of movement), the g-field at that postt i

my 1- .32
A3 '(

Eg=N.—>g= -

3
1 — B?.s5in?0)2

The orientation oﬁg learns that the direction of the flow of g-infation atP is
not the same as the direction of the flow of infatons.

2. With n, the density of the cloud of informatons Bt (number of
informatons per unit volume), the g-induction attpoint is:

Vo.mo 1_32

Bg=n.§ﬁ= 3(77')X1_7))

)
4T (1 B2 sin2 0)2

One can verify (Appendix A) that:

1. divE, =0 2. divB, =0
, 9B, L 1 0E,
3. T'OtEg = _W 4. T'Oth = C_ZW

These relations are the laws of GEM (Maxwell-Heides in the case of the
gravitational field of a particle describing a uarin rectilinear motion. It is
important to notice that (3) and (4) express hogvréspective changes in space
and time are linked to each other, and that (8) @) don’t express causal
relationships. The gravitational field is a dwaitity having a field and an
induction component.

* Also called: “gravito-electromagnetic” (GEM fieldy “gravito-magnetic” field (GM field)
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If v << c, the expressions for the g-field and the g-inducteduce to:

E, = =

(T X D)

— . T' -
4mner3 9 4qr3

45 THE GRAVITATIONAL FIELD OF A SET OF PARTICLES
MOVING WITH CONSTANT VELOCITIES

We consider a set of particles,...,m,...m, that move with constant velocities
Uy, ..., U;, .., Uy relative to an inertial reference frare This set creates and
maintains a gravitational field that at each pahithe space linked t@, is

characterised by the vector pdi,( B,).

1. Each masm continuously emits g-information and contribubath an
amountﬁgl- to the g-field at an arbitrary poiRt As in 83.2 we conclude that the

effective g-fieldE, at P is defined as:
Eg = z Egi

2. If it is moving, each mass emits als@-information, contributing to the

g- induction aP with an amounﬁgi. It is evident that thg—information in the
volume elemendlV atP at each momerttis expressed by:

> Bouedv) = () By).dv

Thus, the effective g-inductia, at P is:

Bg = ZBgi

On the basis of the superposition principle we camclude that the laws of GEM
mentioned in the previous section remain validtfe effective g-field and g-
induction in the case of the gravitational field afset of particles describing
uniform rectilinear motions
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4.6 THE GRAVITATIONAL FIELD OF A STATIONARY MASS F LOW

The term “stationary mass flow” refers to the moeaitof an homogeneous and
incompressible fluid that, in an invariable wayowiks relative to an inertial
reference frame. The intensity of the flow at dmteary pointP is characterized

by the flow densitny. The magnitude of this vectoral quantityPagéquals the
rate per unit area at which the mass flows throagturface element that is
perpendicular to the flow &. The orientation ofG corresponds to the direction

of that flow. Ifv is the velocity of the mass elemepg.dV that at the moment
t flows throughP, then:

-

Je = Pe-

U

So, the rate at which the flow transports — in pibsitive sense (defined by the
orientation of the surface vectaTS)) - mass through an arbitrary surfats, is:

>
iG zj ]GdS
AS

We calli; theintensity of the mass flow througs.

Since a stationary mass flow is the macroscopicifestation of moving mass
elements p;.dV, it creates and maintains a gravitational fielshd since the
velocity v of the mass element at a certain point is timeepedidentthe

gravitational field of a stationary mass flow vk time independentt is evident
that the rules of 83.3 also apply for this timeapdndent g-field:

2.r0t§g =0 what implies: Eg = —gradVj

One can prové&Bl4 that the rules for the time independent g-indurctice:

1. divﬁg = 0 what implies the existence of a vector gravitatigrmential
functiofy, for whichB, = rot4,

2.r0t§g = —vO.fG
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These are the laws of GEM in the case of the tatonal field of a stationary
mass flow.
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CHAPTER 5

THE GRAVITATIONAL FIELD OF AN
ACCELERATED OBJECT

An accelerated object is the source of a gravitalifield that, at a sufficient
great distance from that object, is characterized by a transvgrfield and
g-induction that are both inversely proportionat.to

5.1 THE ¢g-INDEX OF AN INFORMATON EMITTED BY AN
ACCELERATED PARTICLE

Fig 5

In fig 5 we consider a point mass that, during a finite time interval, moves
with constant acceleratiagh= a. €, relative to the inertial reference frafdxYZ
At the moment =0, m starts from rest at the origih and at =t it passes at
the pointP;. Its velocity is there defined by= v.e, = a.t.e,, and its position
by

1 1

z=—.a.t’?==.v.t
2 2
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We suppose that the spaeckmains much smaller than the speed ofiig?«l.

The informatons that during the infinitesimal timnéerval ¢, t+dt) pass near the
fixed pointP (whose position relative to the moving masss defined by the
time dependent position vectdr have been emitted at the moment t — At,
whenm —with velocity v, = v,.€, = v(t — At). e, — passed d®, (the position
of P relative toPy is defined by the time dependent position veéjor 7(t —
At)). At, the time interval during whicim moves fromP, to P; is the time that

the informatons need to move — with the speedgbit k- fromP, to P. We can
0

conclude thatlit = % and that

To To
vy = v(t — At) :v(t—?) =v—a.?

Between the moment$ =t and t = to+ 4t, m moves fromPyto P;. That
movement can be considered as the resultant (ffer®uosition) of

1. a uniform movement with constant spege- v(t — At) and
2. a uniformly accelerated movement withstant acceleratioa.

Fig 6,a

In fig. 6,a, we consider the case of the point nmasmoving with constant speed
v, along theZ-axis. At the momentt, =t — At m passes aP, and at the
momentt atP;: P,P; = v,.At. The informatons that, during the infinitesimal
time interval {, t + dt), pass near the poiRt- whose position relative to the
uniformly moving massn at the moment is defined by the position vectsf -
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have been emitted at the momgnivhenm passed aP,. Their velocity vector
¢ is on the lineP, P, their g-indexs, points toP;:

. To
Popl = vo.At - UOF

2.1n fig 6,b we consider the case of the point nmasgarting at rest &, and
moving with constant acceleratianalong theZ-axis.

Fig 6,b

At the momentt, = t — At itis atP, and at the momertt at P,
.1

POP1 = E. a. (At)z

The informatons that during the infinitesimal timeerval ¢, t + dt) pass near the
pointP (whose position relative to the uniformly acceledamassnis att defined
by the position vectaf") have been emitted gtwhenmwas atP,. Their velocity
vectorc points away fronP , their g-indexs, to P,.

Z’ A

Fig. 6,c
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To determine the position &,, we consider the trajectory of the informatons
that att, are emitted in the direction &f relative to the accelerated reference

frameOX'Y’Z’ that is anchored tm (fig 6,c; a = %— 6,).

Relative toOX'Y’Z’ these informatons are accelerated with an amedntthey
follow a parabolic trajectory described by the dopma

1 a

! !
Z =tga. _———_—
ga.y 2 c%.cos’a Y

12

At the moment = t, + At, when they pass &, the tangent line to that trajectory
cuts theZ’-axis at the poinM, that is defined by:

o

.a.—2

N| =

1
Zy = 5@ (4t)? =

a

That means that the g-indices of the informatoas &hthe momerit pass aP,
point to a poinM on theZ-axis that has a lead of

To

2
.Cl.—z

N =

. 1
P1P2 =P0M=E.a.(At)2 =

9}

on P,, the actual position of the mass And sinceP,P, = P,P; + P,P,, we
conclude that:
2
To
2

P,P, = a.
02 ac

In the inertial reference fran@XYZ(fig 6), s, points to the poinP, on theZ-

axisdetermined by the superposition of the effect efwtlocity () and the effect
of the acceleratior2y:

, " UO a 2
P0P2=P0P1+P0P2=?.r0+;.r0

The carrier line of the g-index; of an informaton that - relative to the inertial

frame OXYZ -at the moment passes ned? forms a “characteristic angletd
with the carrier line of its velocity vectar that can be deduced by application of
the sine-rule in trianglg, P, P (fig 5):
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sin(460) _ sin(6, + 46)
PoP, To

We conclude:
v a
sin(40) = ?O.sin(eo +46) + —.1.5in( 6, + 46)

From the fact thaloP; - the distance travelled by during the time intervatit -
can be neglected relative BgP - the distance travelled by light during the same
period - it follows thatf, = 8, + 46 = 6 and that, = r. So:

; Vo . a ;
sin(40) z?.sme +§.r.sm9

We can conclude that the g-ind€yof an informaton that at the momemasses
nearP, has a longitudinal component, this is a componettié direction of (its
velocity vector) and a transversal component,ith&s component perpendicular
to that direction. It is evident that:

Sy = —Sg.cos(A0).e, — sy.sin(46).€, .

- Vo . a : -
X —Sg.€c —Sg.(?.sme +C—2.r.5m6).elc

5.2 THE GRAVITATIONAL FIELD OF AN ACCELERATED PARTI CLE

The informatons that, at the momerdare passing near the fixed poiht defined
by the time dependent position vecfor are emitted whem was atP, (fig 6).

Their velocityc is on the same carrier line &s= Iﬁ) Their g-index is on the
carrier lineP,P. According to 85.1, the characteristic angyfe- this is the angle
between the carrier lines 6f, and ¢ - has two components:

1. acomponertd’ related to the velocity ahat the momentt(— %0) when

the considered informatons were emitted. In theméwork of our assumptions,

this component is determined by:

vt -5

sin(460") = Tc.sin 0

2. a componenti@” related to the acceleration wfat the moment when
they were emitted. This component is, in the fra& of our assumptions,
determined by:
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a(t — Z).r
sin(40") = ——=5— sin6

C2
The macroscopic effect of the emission of g-infaioraby the accelerated mass
mis a gravitational fieIdEg, Eg). We introduce the reference systeiné, ., €,)

(fig 6).

1. Eg, the g-field aP, is defined as the density of the flow of g-inforiroat

at that point. That density is the rate at whiahfgrmation crosses per unit area
the elementary surface perpendicular to the doectf movement of the

informatons. S(ifg is the product oN, the density of the flow of informatons at
P, with s, their g-index:

E, =N.3,

According to the postulate of the emission of infatons, the magnitude §f is
the elementary g-information quantity:

1
Sg = = 6,18.107%%m3s1
K.ng

and the density of the flow of informatonshats:

N N _K.m

N = ~ =
4.rg  4.omr? 4mr?

L 1 :
Taking into account th% = vy, We obtain:
0.

> m
Eg

-

4. 1. 12" b
—{

Vo.M
4. 1r

r r
.v(t—z).sine + .a(t—z).sine}. €.

41.1¢. C. T2

2. §g, the g-induction aP, is defined as the density of the cloudfof

information at that point. That density is thegurot ofn, the density of the cloud
of informations aP (number per unit volume) wity, their f-index:

Bg =nNn. §ﬁ
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The-index of an informaton refers to the informatibnarries about the state of
motion of its emitter; it is defined as:

CXSg

Sp =
B c

And the density of the cloud of informatondas related td\, the density of the
flow of informatons at that point byn = %

So:

And with the expression of that we have deriveavalunded we finally obtain:

Vo.M
4.1.712

=)

r. . Vo-mMm r. . >
g = —1{ .v(t—z).sm9+4.n Clr.a(t—;).sm@}.eq,

From this it can be concluded that at a p&ingufficient far from the accelerated
particle m, the components of its gravitational field arehbotinsverse to the

: : L1
velocity of the informatons and they are proporicio ~
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CHAPTER 6
THE MAXWELL-HEAVISIDE EQUATIONS

6 The Maxwell-Heaviside equations

The gravitational field is set iip?Bl by a given distribution of - whether or not
moving - masses and it is defined byeator field with two components: they*

field” characterized by the vect(ﬁg and the g-inductiori characterized by the

vectorﬁg. These components each have a value defineceat puint of space

and time and are thus, relative to an inertial rezfee frameO, regarded as
functions of the space and time coordinates.

Let us focus on the contribution to a gravitatiohald of one of its sources: a
certain masm. We focus, more specifically, on the contributadm to the flow
of g-information at an arbitrary poift in the field. That flow is made up of
informatons that pass neBrin a specific direction with velocity and it is
characterized by, the rate per unit area at which these informatengss an
elementary surface perpendicular to the directmorhich they move. The cloud
of these informatons in the vicinity Bfis characterized by the density nis the
number of informatons per unit volumbl. and n are linked by the relationship:

The definition in chapter 2 of an informaton imglithat every informaton that
passes nedtis characterized by two attributes that referge@initter: its g-index
sy and itsB-indexsy. sy, the magnitude of the g-index is the elementagntjty

of g-information. It is a fundamental physical stant. 5; refers to the state of
motion of the source of the informaton and is dediby the relationship

- -
CXSg

(2)

Sﬁ = c
The informatons emitted by that pass ned® with velocity¢ contribute there
to thedensity of the g-information flowith an amountX.s;). That vectoral
guantity is the rate per unit area at which g-infation atP crosses an elementary
surface perpendicular to the direction in whichndves. It is the contribution of
mto the g-field aP. We put



E, = N.5,

And the same informatons contribute there todbesity of the g-information
cloudwith an amountr{(. sg). That vectoral quantity determinasP the amount
of B-information per volume unit. It is the contribati of mto the g-induction at
P. We put:

Bg = N.Sp

Fig 7

In fig 7, we consider the flow of informatons thait the moment - pass neapP
with velocity ¢. They are completely defined by their attribufgsand s,
respectively theig-indexand theirB-index. 48 is their characteristic angle: the
angle between the lines carryisg andc that is characteristic for the movement
of the emitter.

The infinitesimal change of the attributes of afoimaton atP between the
momentst and(t + dt), is governed by the kinematics of that informati An
informaton that at the momenpasses & is at the moment ¢ dt) atQ, with

PQ = c.dt. This implies that the spatial variation of theiatites of an informaton
betweerP andQ at the momentequals the change in time of those attributes at
P between the moment { df) and the momerit

On the macroscopic level, this implies that therestnie a relationship between
the change in time of the gravitational figl,, B,) at a point P and the spatial
variation of that field in the vicinity of P.
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The intensity of the spatial variation of the coments of the gravitational field

atPis characterized byivE,, divB,, rotE, and byrotB, and the rate at which
th ts change in ti oEs db 95

ese components change in time and by —=.
P J g Y ot

From the above it can be concluded that it makesesd¢o investigate the
relationships between the quantities that chanaetehe spatial variations of

(E,.B,) and the rate’s at which they change in time.

6.1 divfg - THE FIRST EQUATION IN FREE SPACE

In 83.1 and in 84.1 and it is shown that the ptgldiact that the rate at which g-
information flows inward a closed empty space neséqual to the rate at which
it flows outward, can be expressed as:

- e
#SEg.ds=o

So (theorem of Ostrogradsky)
divﬁg =0

In vacuum, the law of conservation of g-informatioan be expressed as
followed:

(1) At a matter free point P of a gravitationatlfl, the spatial variation ofg
obeys the law: divE, = 0

This is the first equation of Maxwell-Heavisidevacuum.

Corollary: At a matter free point P of a gravitational field

% [N.cos(460)] = 0

Becausé
divEg = div(N.S,) = grad(N).5, + N.div(s,) 3)

it follows from the first equation that:
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grad(N).s; + N.div(s;) =0
1. First we calculategrad(N). s,.

Referring to fig 7:
No—Np

€,

anvy = Ne = Ne o
grad(N) = —p5—8 =—

Because an informaton that at the morhgrgsses & is at the moment

¢ + db) atQ, (with PQ = c.d).

No—Np N(t—dt)—N()  ON

dt dt ot
So:

o LN 10N
grad(N) = ot T T ot e

1 ov ,, 10N 16 4
C.S, = C.at.sg.cos( ) 4)

2. Next, we calculateN. div(s,)
I 4
P Sg-dS
div(s,y) = av

For that purpose, we calculate the doulilgiral over the closed surfae
formed by the infinitesimal surface$ that are aP and Q perpendicular
to the flow of informatons (perpendiculaijaand by the tube that connects
the edges of these surfaces (and that @lglaio ¢). dV =c.dt.dSis the

infinitesimal volume enclosed Iy

Sg ds _ Sg-dS.cos(A6p) — s4.dS.cos(46,)
dS.c.dt

div(§g) ="
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Because an informaton that at the morhgrdsses & is at the moment
t + dt) atQ, (withPQ = c.d:

cos(46p) —cos(46,)  cos[48(t)] — cos [46(t — dt)]  d[cos(46)]

dt dt dt

o 1 d{cos(40)}
dw(sg) = Z'SQ'T
And:

N.div(3,) = g.sg.w ©)

Substitution of (4) and (5) in (3) gives:

1 oN 18 +N d{cos(40)} 0
iy .sg.cos( ) p . Sg- 5t =

Or:

d
E[N.COS(AQ)] =0 (6)

6.2 div_B)g — THE SECOND EQUATION IN FREE SPACE

Fig 8

We refer to fig 8 and notice that:
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6x§g

Sy = —Sg. €y and Sp = = 54.5in(46).¢,

c

From mathemati¢8 we know:

div§g = div(n.Sz) = grad(n).Sz + n.div(3g) (7)

1. Firstwe calculate:grad(n). s

grad(n).sg = 0 becausgrad(n)is perpendicular t§;. Indeedn changes
only in the direction of the flow of inforrmans, sagrad(n)has the same
orientation ag:

2. Next we calculaten. div(sg)

I 4

We calculate the double integral over tluset surfac& formed by the
infinitesimal surfaceslS = dz.dythat are aP and atQ perpendicular to the
X-axis and by the tube that connects the edgdsesétsurfaces.

Becauss is oriented along the-axis the flux of,; through the planedz.dy

anddx.dzis zero, while the fluxes through the pladesdyare equal and
opposite. So we can conclude that:

Both terms of the expression (7)c11'h7§g are zero, sdivﬁg = 0, what implies
(theorem of Ostrogradsky) that for every closedem@Sin a gravitational field:

-
#Bg. $=0
S

We conclude:
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(2) At a matter free point P of a gravitational fielthe spatial variation oﬁg
obeys the law: divB, = 0

This is the second equation of Maxwell-Heavisideanuum. It is the expression

of the fact that th@-index of an informaton is always perpendiculabdth its g-
indexs,; and to its velocity'.

6.3 rotfg - THE THIRD EQUATION IN FREE SPACE

The density of the flow of informatons that - a& thoment - passes ned with
velocity ¢ (fig 8) is defined as:

E, = N.3, = —N.s,.8,
We know thdf!

rotﬁg = {grad(N) x §;} + N.rot(S;)  (8)

1. First we calculate:grad(N) X 5;}

This expression describes the componen@tcﬁ‘)g caused by the spatial
variation oN in the vicinity ofP when46 remains constant.

N has the same value at all points of the infinitegisurface that, &, is
perpendicular to the flow of informatonSograd(N)is parallel to¢ and its
magnitude is the increase of the magnitdde er unit length. Thus,
with PQ = c.dt, grad(N)is determined by:

No—Np ¢ Ny,—Np ¢
Q P Q P
d(N) = ——— —=—~—= -
grad(N) PQ c c.dt ¢
And:
N, —Np ¢ Ny — N,
- NN P > Vg P S
gradN) X sg ==t ¥~ "car ¥

The density of the flow of informatons@tt the momentis equal to the
density of that flow & at the momentt (- dt), so:
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NQ—NP_N(t—dt)—N(t)__a_N
dt dt ot

And taking into account that :
N
) Cc
we obtain:

grad(N) x §; = ——.5 (9)

2. Next we calculatef N.rot(s;) }

This expression describes the componemﬁg caused by the spatial
variation o#d6 - the orientation of the g-index - in the vicinayP - whenN
remains constant46)p is the characteristic angle of the informatons tha
pass nedt and(40)q is the characteristic angle of the informatons tha
at the same moment pass r@acfig 9)

For the calculation of

L
sg.dl

T‘Ot(Sg) = d—S
withdS the encircled area, we calcul@tég cﬁ along the closed path

PQgpP that encirclesdS dS= PQ.Pp = c.dt.Pp (PQ andgp are parallel
to the flow of the informaton€)q andpP are perpendicular to it).

Fig 9
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Sq-Sin[(460)q].Qq — s4.5in[(46)p)].pP 3

N.rot(sg) = N. c.dt.Pp .e,

The characteristic angle of the informat@at at the momernttis equal to
the characteristic angle of the informatati3 at the momentt ¢ df), so:

Sqg-Sin[460(t — dt)].Qq — sg.sin[ 46 (t)].pP
L€,
c.dt.Pp

N.rot(§g) = N.

The rate at which si@) in P changes at the momenis:

d{sin(46)} _ sin{[46](t)} — sin{[A8](¢t — dt)}
ot B dt

And taking into account that
N
n=-—
Cc

we obtain:
d{sin( 46 9]
N.rot(s,) = —n. Sg.%.@ = — n.a{sg.sin(AH).éz}
or
ds
N.rot(3;) = —n.a—f (10)

Combining the results (9) and (10), we obtain

rotﬁg = grad(N) x 5, + N.rot(§g)
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We conclude:

(3) At a matter free point P of a gravitationatlfl, the spatial variation ofg
and the rate at whicﬁg Is changing are connected by the relation:

rotEg = ——

This is the third equation of Maxwell-Heavisidevacuum. It is the expression
of the fact that any change of the produdi; at a point of a gravitational field is

related to a spatial variation of the proddcg in the vicinity of that point.

The relation
. oB
tF = ——2

implies (theorem of Stok@é'

o= [[Ged= g fn @

_)
The orientation of the surface vectts is linked to the orientation of the path on

L by the “rule of the corkscrew'®; = [f, B,. ds is called the B-information-
flux throughS'.

So,in a gravitational field, the rate at which the $age integral of§g over a

surface S changes is equal and opposite to theifitegral of Eg over the
boundary L of that surface.

—

— OE
6.4 rotB, and a_tg - THE FOURTH EQUATION IN FREE SPACE

We consider agaiﬁg andB,, the contributions of the informatons that - & th
moment t — pass with velocify nearP, to the g-field and to the g-induction at
that point.(fig 10).

E; =N.s;g = —N.sg.ey

and
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XSg

ay

= n.s,.5in(46).¢é,

D!
Il
S

x
Il
S

Fig 10

A. Let us calculateotB,.

We know thaf!
r0t§g = {grad(n) x S} + n.rot(ss) (12)

1. First we calculategrad(n) x sz}

This expression describes the componemﬁg caused by the spatial
variation oh in the vicinity ofP when46 remains constant.

nhas the same value at all points of the infinitesisurface that, &, is
perpendicular to the flow of informatorfSograd(n)is parallel to¢ and its
magnitude is the increase of the magnitfdeper unit length.

With PQ = c.dt, grad(n)is determined by:
TLQ—nP E_ nQ_np E
c

grad(n) = PQ ¢ c.dt

The density of the cloud of informaton€edt the momentis equal to the
density of that flow & at the momentt (- dt), so:

nQ—nP_n(t—dt)—n(t)__a_n
dt dt ot

And



on

grad(n) = — e

Al
al oy
—_
Q
S
¢

The vector §rad(n) x sz} is perpendicular to het plane determinedcby
andss. So, it lies in theY-plane and is there perpendiculactdorming
an angledd with the axiOY. Taking into account the definition of vectoral

product we obtain:

1 dn
grad(n) X Sg = —Z.E.sg.sin(de). (e. X é,)
With
éc X é>z - _gJ_c
- 1 an . -
grad(n) X sz = Z.E.sg.sm(zle).elc

o N :
And, taking into account that = - we obtain:

, 1 0N . "
grad(n) X sg = ;.E.Sg.Sln(AQ).eJ_C (13)

2. Next we calculaten. rot(ss) }

This expression is the componenmrfﬁg caused by the spatial variation of
§ﬁ in the vicinity ofP whenn remains constant. For the calculation of

L
ﬁSﬁd
as

o~

rot(Sg) = €.

withdS the encircled area, we calcul¢t§ﬁ d_i along the closed path

PpgQP that encirclesdS dS= PQ.Pp = c.dt.Pp(fig 11). PQ andgpare
parallel to the flow of the informaton®@q andpP are perpendicular to it).
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_ $3p.dl 3 Sg-Sin[(46)p)]. Pp — s4.sin [(46),].qQ 2
as Tt c.dt.Pp e

The characteristic angle of the informat@at at the momerntis equal to
the characteristic angle of the informatati3 at the momentt & df), so:

—

¢ Sp.dl : S {sin[ 40 (t)]. Pp — s,4.sin[460(t — dt)]}.qQ 2
s e c.dt.Pp e

rot(§ﬁ) =

U

The rate at which sia@) atP changes at the momenis:

d{sin(46)}  sin{(40)[t]} — sin{(40) [t — dt]}

Jt dt
So:
. 1 d[sin(46)] .
TOt(S[;) = Sg.z.T.elc
And with

=
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we finally obtain:

1 d[sin(40)]

n.rot(sp) = Sz N5, -Lc (14)
Substituting the results (13) and (14) in (12) give
L1 N d[sin(46)]. ,
rotB, = ;.sg.{a.sm(éle) + N'T}' €lc
1 a . -
= c_Z'SgE[N' sin(40)].¢€, . (15)
0E,
B. Now we calculateg
We know that!:
0E, ON | 93,
ot otV
And that:
A A 03, 9(40) _
Sg = —Sg. €y and e Sg- % L€y
So:
0E, ON Ly 240
5 - ot . Sg- €x . Sg- 5% .ey

Taking into account:
éx = cos(40).é. —sin(460).€,. and €, = sin(40).é. + cos(40).é,,

we obtain:
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ON
—E.sg.cos(AO) + N.sg4

aEg_[

46) . q
s .Sm(AH)] €.

dt

ON . 6) ,
+ [E.sg.sm(AH) + N.sg .cos(AH)].elc

ot
or:
Ok _ 0 IN.cos(40)| .2, + - [N.sin(46)]. 8
5t —sg.{ at[ .cos(40)].e, 61:[ .sin(460)].e, .}

Taking into account (6), we find:

JE, d
Fr T [N.sin(460)].€,, (16)

C. From (15) an (16), we conclude:

5] OE,
"0t = 27t

(4) At a matter free point P of a gravitational fielthe spatial variation o§g
and the rate at whicﬁg Is changing are connected by the relation:

rotB = ——g

2 0ot

This is the fourth equation of Maxwell-Heavisidevecuum. It is the expression
of the fact that any change of the proddic; at a point of a gravitational field

is related to a spatial variation of the produd; in the vicinity of that point.

This relation implies (theorem of Stoke#):a gravitational field, the rate at
which the surface integral (ﬁ‘g over a surface S changes is proportional to the

line integral of§g over the boundary L of that surface:

jgﬁ d_i—lﬂaﬁgd_) U 2 10%
97" ez ))g ot c2at c? ot
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_)
The orientation of the surface vectt! is linked to the orientation of the path on

L by the “rule of the corkscrew’d; = [f, Eg .dS is called the “g-information-
flux throughS'.

6.5 THE MAXWELL-HEAVISIDE EQUATIONS

The volume-element at a pofdtnside a mass continuum is in any case an emitter
of g-information and, if the mass is moving, alseairce off3-information.
According to 83.3, the instantaneous valuepgf- the mass density & -

contributes to the instantaneous vaIudi@fﬁ at that point with an amoumZ—G
0

and according to 84.the instantaneous value jy‘ - the mass flow den5|ty -
contributes to the instantaneous vaIueaIfB atP with an amount-v,,. ]G

It is evident that at a point of a gravitationalldi - linked to an inertial reference
frame O - one must take into account the contributionghef local values of
pc(x,y,z;t) and offG (x,y,z;t) . This results in the generalization and expansio
of the laws at a mass free point. By superpositierobtain:

(1) At a point P of a gravitational field, the spatwriation ofﬁg obeys the
law:

In integral form:

(2) Ata point P of a gravitational field, the spatiariation of§g obeys the law;
divﬁg =0

In integral form:
— —>
Pp = #Bg.ds =0
S
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(3) At a point P of a gravitational field, the spdtiariation of Eg and the rate
at which§g Is changing are connected by the relation:

In integral form:

5 > aB—> GCDB
IERE ST

(4) At a point P of a gravitational field, the spdtiariation of§g and the rate
at Whichﬁg Is changing are connected by the relation:
L 10E, N

rotB, = ——— —v,.
g C2 at 0]G

In integral form:

f U gds VO'ﬂsfg'd_)Szc_lz'%jfsﬁg'ﬁ_vo-ﬂsfc.d_)s

These are the laws of Heaviside-Maxwell or the laiMGEM.
6.6 CONCLUSION

The mathematical deductions of the laws of GEM kconthat these equations
indicate that there is no causal link betwegnand B,. Thereforewe must
conclude that a gravitational field is a dual eptdlways having a “field-" and

n “induction-" component simultaneously createg their common sources:
time-variable masses and mass flows

The GEM equations are analogue to Maxwell’s eqoatio EM and it is proved
that these are consistent with special relativijhus,the Maxwell-Heaviside
equations are invariant under a Lorentz transforimatand GEM is consistent
with special relativity. In this context it should be noted that the faet the rate
at which a material body emits informatons is irelegent of its velocity and
completely defined by its rest mass, implies that in equation (1) the value of

* On the understanding that the induction-componguotls zero if the source of the field is
time independent.
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d : : : N
P = ;110 depends on the state of motion — relative tocthresidered inertial

reference system - of the mass elendent Indeed in the case of a moving mass
element, the Lorentz contraction must be takemaetount in the determination

of dV. Because a mass flow is made up of moving massesits its densitjc
also depends on the inertial reference frame ichvitis considered. This implies
that in equation (4) the expression fgf also depends on the inertial reference
frame.

In appendix B it is proven that the GEM equatioresraathematically consistent.
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CHAPTER 7
THE GRAVITATIONAL INTERACTIONS

In the framework of the theory of informatons, travitational interactions are
understood as the reaction of an object to theudiahce of its proper
gravitational field by gravitational fields of othebjects.

7.1 THE GRAVITATIONAL INTERACTION BETWEEN PARTICLE S
AT REST

We consider a set of point masses anchored inegitidhreference fram@. They
create and maintain a gravitational field thatathepoint of the space linked to

Ois completely determined by the vecfgr Each mass is “immersed” in a cloud

of g-information. At every point, except at itsmposition, each mass contributes
to the construction of that cloud.

Let us consider the massanchored aP. If the other masses were not there, then
mwould be at the centre of a perfectly sphericaldlof g-information. In reality
this is not the case: the emission of g-informatlmn the other masses is
responsible for the disturbance of thelh&racteristic symmettyof the proper g-

field of m. Because‘fg atP represents the intensity of the flow of g-inforioat
send toP by the other masses, the extent of disturbancéefcharacteristic
symmetry in the immediate vicinity ofiis determined bﬁg atp.

If it was free to move, the point masscould restore the characteristic symmetry
of the g-information cloud in its immediate vicpiby accelerating with an

amountd = Eg. Indeed, accelerating this way has the effedtttteextern field
disappears in the origin of the reference framghared tom. If it accelerates
with an amounti = Eg, the mass would become “blind” for the g-informoati

send to its immediate vicinity by the other massés,“sees” only its proper
spherical g-information cloud.

So, from the point of view of a particle at resagiointP at a gravitational field
Eg, the characteristic symmetry of the g-informatidoud in its immediate

vicinity is conserved if it accelerates with an amba = Eg. A point mass that

Is anchored in a gravitational field cannot acaeker In that caseténdsto move.
These insight is expressed in the following poséula
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A particle anchored at a point of a gravitation&lél is subjected to a tendency
to move in the direction defined @ the g-field at that point. Once the

anchorage is broken, the mass acquires a vectmeelerationa that equalsﬁg.

7.2 THE GRAVITATIONAL FORCE — THE FORCE CONCEPT

A point massm, anchored at a poirR of a gravitational field, experiences an
action because of that field, an action that is pensated by the anchorage.

1. That action is proportional to the extent to whitte characteristic
symmetry of the proper gravitational fieldmofin the immediate vicinity oP is

disturbed by the extern g-field, thus to the vajngg atP.

2. It depends also on the magnitudarof Indeed, the g-information cloud
created and maintained byis more compact inis greater. That implies that

the disturbing effect on the spherical symmetryiatm by the extern g—fielfg

Is smaller whemis greater. Thus, to impose the acceleraiicaﬂﬁg, the action
of the gravitational field om must be greater ihis greater.

We can conclude that the action that tends to ael a point mass in a
gravitational field must be proportional ﬁg, the g-field to which the mass is
exposed; and to, the magnitude of the mass. We represent thiainaloy 136

and we call this vectoral quantity “the force depsd by the g-field on the mass”
or thegravitational forceonm. We define it by the relation:

A mass anchored at a poiatcannot accelerate, what implies that the effect of
the anchorage must compensate the gravitationed folt cannot be otherwise
than that the anchorage exerts an actiomtimat is exactly equal and opposite to
the gravitational force. That action is calledeaction force

Between the gravitational force on a masand the local field strength exists the

following relationship:
S
g =

So, the acceleration imposed to the mass by thatagianal force is:



S

,_Feg

a=—
m

Considering that the gravitational force is nothimg a special force, we can
conclude that this relation can be generalized.

The relation between a foré&and the acceleratiofi that it Imposes to a free
mass m is:

.
F=m.a

7.3 NEWTONS LAW OF UNIVERSAL GRAVITATION

Fig 12

In fig 12 we consider two particles with (rest) mesm andnm, anchored at the
pointsP; andP; of an inertial reference frame.

1. my creates and maintains a gravitational field th&.a$ defined by the g-
field:

- my

Boo = =4 R2 62

We show that this result is embedded in the GEMmjason of gravity.
The first GEM-equation - that is the mathematicgdression of the conservation

of g-information - states that the flux of the gtatronal field through an arbitrary
closed surfac& is determined by the enclosed magsaccording to the law:

- —> mm
# E,.dS=— 1)
Mo

Let us apply this equation to an hypothetical spH&rwith radiusR centered on
P1.
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1. Because of the symmetrﬁg IS at every point of that sphere perpendicular
to its surface and has the same madmit$o, at an arbitrary poiRtof
the spherfy can be expressed as

= -
E, =Ey. e

where, andE,, respectively are the unit vector and the compbfveith
. =T . . —
constant magnitude) &, in the direction of, P.

Further, at any point of the surfacMsphered_f =dS.é,.

- - - - = H
With this information we calculatg_E . dS:

#Eg.(?s’ - #Egr.gr.dS. g = # Egy.dS = Egr.#dS = E,. 4nR? (2)
S S S S

2. The enclosed masgs my, so

mi, =my (3)

Taking into account (2) and (3), (1) becomes:

m
Egy.4TR? = ——
Mo

We conclude: at a poiftat a distanc® from P; the gravitational field is pointing
to P, and determined by:

my -
4mtnoR?%’ °r

Ey =E4.€, =

In particular at the poirR,:

- my

Ego == 4.1.1m9.R?’ 12
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If m, was free, according to the postulate of the ¢g@Henal interaction it would
accelerate with an amoudt

a=Eg2

So the gravitational field of, exerts a “gravitational force” am:

- N - ml.mz
F12 = mz.a = mz.Egz =

-

T 4.7, RZ 12

In a similar manner we fin§21:

my;.m,

N

F = —

This is the mathematical expression of “Newton's &£ universal gravitation:

The force between any two particles having massemdn separated by a
distance R is an attraction acting along the linenjng the particles and has the
magnitude

my.m, 1 my.m,

F=4aG. = :
R? 4mn,  R?

1

= 4, 'S @ universal constant having the same valualfpairs of particles.

7.4 THE GRAVITATIONAL INTERACTION BETWEEN MOVING
OBJECTS

We consider a number of point masses moving r&dbvan inertial reference
frameO. They create and maintain a gravitational fiélattat each point of the

space linked t@ is defined by the vecto, andB,. Each mass is “‘immersed”

in a cloud of informatons carrying both g- agdnformation. At each point,
except at its own position, each mass contribatése construction of that cloud.

Let us consider the massthat, at the moment goes through the poirit with
velocity v.
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1. If the other masses were not thé)ge the g-field in the immediate vicinity

of m (the proper g-field ofm) - would, according to 84.2, be symmetric rekativ
to the carrier line of the vector This results from the fact that the g-indices of
the informatons emitted by during the time intervalt (- 4t, t + 4t) are all
directed to that line. In reality that symmetsydisturbed by the g-information

that the other masses senth(fg, the instantaneous value of the g-fieldPat
defines the extent to which this occurs.

2. If the other masses were not thﬁge theg-induction neam (the proper
g-induction ofm) - would , according to 84.4, “rotate” around tieerier line of
the vectorv. The vectors defining the pseudo—gravitationellelfiEé = U X Eé
defined by the vector product &f with the g-induction that characterizes the
properf-field of m,would - just Iikeﬁé - be symmetric relative to the carrier line
of the vectory. In reality this symmetry is disturbed by t{Bnformation send
to P by the other masses. The vector prodtict §g) of the instantaneous values

of the velocity ofm and of the g-induction &, characterizes the extent to
which this occurs.

So, thecharacteristic symmetrgf the cloud of g-information around a moving
mass (the proper gravitational field) is in the igtmate vicinity ofm disturbed

by E, regarding the proper g-field; and by X B,) regarding the prope-
induction.

If it was free to move, the point mascould restore the characteristic symmetry
in its immediate vicinity by accelerating with amaeuntd’' = E, + (¥ x B)
relative to its proper inertial reference frar@e. In that manner it would become

“blind” for the disturbance of symmetry of the gitational field in its immediate
vicinity. These insights form the basis of thddwling postulate.

A particle m, moving with velocity in a gravitational field E,, B,), tends to

become blind for the influence of that field on shanmetry of its proper
gravitational field. If it is free to move, it laccelerate relative to its proper
inertial reference frame with an amouiit

a'=E;+ (U X By)

* The proper inertial reference frar@e of the particlemis the reference frame that at each mornhent
moves relative t@® with the same velocity an.
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7.5 THE GRAVITATIONAL FORCE LAW

The action of the gravitational fiel&{, B,) on a point mass that is moving with
velocity v relative to the inertial reference frar®e is called thegravitational
forceﬁG on that mass. In extension of 87.2 we defmas:

Fo =my.|Ey + (¥ X By)]
my is the rest mass of the point mass: it is the rtzsdetermines the rate at
which it emits informatons in the space linkedCio If it is free to move, the

effect of F; on the point massis that it will be accelerated relative to the mop
inertial reference fram@®’ with an amountd':

a'=E;+ (U X By)

This acceleration can be decomposed in a tangé@$iphnd a normal component
(dn):
=7 -

ar = ar.ér and dy = ay.€ey

wheree; andey are the unit vectors, respectively along the tahged along the
normal to the path of the point mas€ih(and inO).

We expressiy anda, in function of the characteristics of the motionthe
inertial reference syste [

1 dv v?

and ay = ————
YR J1-pB2

(Ris the radius of curvature of the patiOnand that radius i®’ isR./1 — 2.)

ar =

1-paz

The gravitational force is:

-

FG - mo. a, - mo. (a',I'.é)T + allv. é)N)

1 dv 1 v d[ m
—_— ér+————. 7. &| =

0 -
dt " _pey2 S dt \/1—732'17
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Finally with:

my 5 5
UV=p
1— B2
We obtain:
S dp
Fg = —
¢ dt

p is the linear momentum of the particle relativehe inertial reference frame
O. It is a measure for its inertia, for its alyilib persist in its dynamic state .

7.6 THE INTERACTION BETWEEN TWO MOVING PARTICLES

Fig 13

Two particles with rest masses andm, (fig 13) are anchored in the inertial
reference fram@®’ that is moving relative to the inertial refererfiemeO with
constant velocityy = v.e,. The distance between the massés is

Relative toO’ the particles are at rest. According to Newtdais of universal
gravitation, they exert on each other equal bubsjp forces:

' !l m-l'mz_ 1 my.mp
e TR a7

Relative toO both masses are moving with constant spegdthe direction of
theZ-axis. From the transformation equations betwaemertial frameD and

another inertial framé’, in which a point mass experiencing a fokeis

instantaneously at rest, we can immediately detluedorce F that the point
masses exert on each otheOiff! :
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’ v
F=F12=F21=F,. 1_(Z)Z=F,. 1_ﬁ2

We will now show that also this form of Newton'w laf universal gravitation
perfectly can be deduced in the framework of GEM.

1. According to 84.4, at a poikt - whose position is determined by the time
dependent position vectadr - the gravitational field @,Eg) of a particle with

rest massn, that is moving with constant velociy= v. e, along theZ-axis of
the inertial reference fran@ (fig 14) is determined by:

= m() 1_ﬂ2 -
g: _7":

- 3 3
4TNoT (4 _ g2 sin2 9)2

my 1- .32
ATt 12 '(

>
ér

3
1 — B?%.s5in?0)2

- m() 1_32 - -
Bg:_4n 2.3 5. (VXT)
MoC™-T" (1 — B2.5in2 9)2

With g = E the dimensionless speedn

=7’

U

P1=0’

Fig 14

2. In the inertial reference frant@ of fig 13, the massesy andm, are
moving in the direction of th&-axis with speedv. m, moves through the
gravitational field generated loy;, andmy moves through that generatedriy
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According the above formulas, the magnitude ofghevitational field created
and maintained bym at the position of, is determined by:

m 1
E 1

Z 4mnoR?" 1 — g2

my 1 v

B,, = . —
92 4mn,R? [1—p2 c?

And according to the force lai; = my. [E; + (¥ X By)], Fi2, the magnitude of

theforce exerted by the gravitational fielf ¢, B;,) onm - this is the attraction
force ofmy onm -

Fi = my. (Egz — v.By)

After substitution:

mm
F12:47T0- - 2\/ F21\/1_,82

In the same way we find:

m1m2
F21=47T0- Vl_BZ_FnVl_,BZ

We conclude that the moving masses attract eadn wiith a force:

F=F,=F;=F.{1-p2
This result perfectly agrees with that based ¢h'S.

We also can conclude that the component of thatgtennal force due to the g-
induction isp? times smaller than that due to the g-field. Thiplies that, for
speeds much smaller than the speed of light, fieetsfof the p-information are
masked.
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It can be shown that th@-information emitted by moving gravitating objeds
responsible for deviations (as the advance of Mgreerihelion) of the real orbits
of planets with respect to these predicted by thssical theory of gravitatidh

7.7 THE EQUIVALENCE MASS-ENERGY

The instantaneous value of the foft¢hat acts on a particle with rest mass
that freely moves relative to the inertial referefi@ameO with velocity v, and
the linear momentunp = m. v of that particle are related by:

dp

F=-2
dt

The elementary vectoral displacemetit of my during the elementary time
intervaldtis:

dr = v.dt
And the elementary work done Byluringdt is!:

With
=m.v
1- (%)2
this becomes:
_mg.v.dv dv }
dW = d(m.c?)
[1- _)2 1- (%)2

The work done on the moving particle equals, bynitedn, the increase of the
energy of the mass. Si(m.¢&) is the increase of the energy of the massrard
Is the energy represented by the mass. We carucianc

A particle with relativistic mass m is equivalentan amount of energy of ri.c
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CHAPTER 8
GRAVITATIONAL WAVES

We will show that the existence of gravitationamMes is embedded in GEM. In
the framework of the theory of informatons a gratiinal wave is understood as
the macroscopic manifestation of the fact that‘tten” of informatons emitted
by an oscillating source and travelling with theeg of light in a certain direction
Is a spatial sequence of informatons whose charstiteangle is harmonically
fluctuating along the “train” what implies that tkcemponent of their g-index
perpendicular to their velociyand thei-index fluctuate harmonically in space.
Gravitational waves transport gravitational energgcause some of the

informatons that constitute the “train” are casi@f energy. They are called
gravitons.

8.1 THE WAVE EQUATION

In free space - wheyg; =fG =0 - the GEM equations are:

1. divE, = 0
2. diUBg =0
3. rotE, = 08,
. Tro g = at
L 10E,
4, T'Oth = C_ZW

To attempt a solution of a group of simultaneousaéigns, it is usually a good

plan to separate the various functions of spaeertee at equations that give the
distributions of each.

It follows from (3):

, 0B, ,
rot(rotEg) = —rot <W> (39
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BecausB! rot(rotF) = grad(divF) — V2F, whereVZis the Laplacian, (3"
leads to:
grad(divEy) — V°E,; = —rot(W = —a(roth)

And taking into account (1) and (4):

N

Vi = ®)

This is the general form of the wave equation.sTarm applies as well to the g-
induction, as is readily shown by taking first tieéor of (4) and then substituting
(2) and (3):

1 02B,

- Y

Solutions of this equation describe how disturbanakthe gravitational field
propagate as waves with speed c.

To illustrate this we consider the special casgpaice variation in one dimension
only. If we take the&-component of (5) and have space variations ontieiz-
direction, the equation becomes simply:

0%Ey, 1 0%Ey,

9z2  c2  Ot2

This equation has a general solution of the form

Ep=fi(t-2)+£(t+2) 6

The first term of (6) represents the wave or fuorcti; traveling with velocityc
and unchanged form in the positizalirection, the second term represents the
wave or functiorf, traveling with velocityc and unchanging form in the negative
z-direction.

8.2 GRAVITATIONAL WAVE EMITTED BY A HARMONICALLY
OSCILLATING PARTICLE

In fig 15 we consider a point masghat harmonically oscillates around the origin
. . . w .
of the inertial reference frant@ with frequencyv = s At the moment it
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passes aP;. We suppose that the speed of the particle isyswnuch smaller
than the speed of light and that it is described by

v(t) =V.coswt

The elongatiorz(t) and the acceleratiam(t) are then expressed as:

z(t) = g.cos(wt — g) and a(t) =w.V.cos(wt + g)

We restrict our considerations about the gravitetidield of m to pointsP that
are sufficiently far away from the origid. Under that condition we can posit
that the fluctuation of the length of the veciﬁ?) = 7, is very small relative to
the length of the time-independent position veétothat defines the position of

P relative to the origirD. In other words: we assume that the amplitude of the
oscillation is very small relative to the distanbe$ween the origin and the points
P on which we focus.

8.2.1 The transversal gravitational field of a harnonically oscillating particle

Starting from the complex quantiy= V.e’/? - that is representing(t) - EgJ_w
the complex representation of the time dependemt pf the transversal



72

component ofg, and Bg(p, the complex representation df,, at P follows
immediately from 85.2:

5 m.V ke 1 j.w.vo) o
=———.e kT .sin

gLe A No.C. T2 r 0

i} Vo.m.V

— —j.kr ]k in o
g9 = "4 € .(r—2+7).sm

where k = % the phase constant. Note tﬁgg, = %

Thus, relative t®, B, and the time dependent part Bf, . are expressed as
functions of the space and time coordinates as:

E 1 (rl 01 t)
By (1,0;t) = %
Vo.-m.V.sin @ . V1 + k?r?
= .cos(wt —kr + @ +m)
Amr?
with tg® = kr.

So, an harmonically oscillating particle emits arsversal “gravitomagnetic”
wave that propagates out of the mass with thecspekght:

In points at a great distance from the oscillatimgss, specifically there where

1 : : :
r>> P % this expression asymptotically equals:

E Vo-k.m.V.sin6
__~glc — 0 . _
Byy = - yy— .sin(wt — kr)

_Vom.w.V.sinf -
= yrp— sin(w )
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ry .
vo.m.a(t—z).sme

4mcr

The intensity of the “far gravitational field” iswversely proportional to, and is
determined by the component of the acceleration, éat is perpendicular to the
direction ofé..

8.2.2 The longitudinal gravitational field of a hamonically oscillating
particle

The oscillation of the point mags along theZ-axis is responsible for the
existence of a fluctuation aof = P,P, the distance travelled by the informatons
at the momentt when they pass ned?. Within the framework of our
approximations:

r
r z(t —2)
1o(t) = 1.(t) zr—z(t—z).cost9=r. 1- .cos 0
and
r
1, 1 z(t =)
(a) a2 1+ Z.T.cos 0)
From 85.2, it follows:
E,. = = = 2.z(t z 0
9T 4mner? 4mam,rd -2( c)'COS

SoEgC, the complex representation of the time depenplarttof the longitudinal

gravitationel field is:

= : —. 0
ge AT j.w.ngy.73 €05

We conclude that an harmonically oscillating pamass emits a longitudinal
gravitational wave that - relative to the positminthe mass - expands with the
speed of light:
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E,.(r,0;t) = mV__ 2 t—k
ge(,0) )_4.n.n0.c.k'r3'sm(w )

: : : : 1 . :
Because its amplitude is proportlonal;go at a great distance from the emitter
the longitudinal field can be neglected relativéhte transversal.

8.3 GRAVITATIONAL WAVE EMITTED BY AN OBJECT WITH
VARIABLE REST MASS

Another phenomenon that is the source of a gramsitak wave is the conversion
of rest mass into energy (what per example happetise case of radioactive
processes). To illustrate this, let us - relatwean inertial reference frame -
consider a particle with rest magg that - due to intern instability - during the
period (, At) emits EM radiation.

This implies that that particle during that timeeirval is emitting electromagnetic
energy Ugw carried by photons (and gravitational enetdyev” carried by
gravitons) that propagate with the speed of ligBetween the momertt=0 and

the moment= 4t, the rest mass of the particleis, because of this

Upm(+UgEM)
CZ

value my. Because the gravitational field is determined byrdst mass, this
implies that ift<0 the source othe gravitational field of the particle iy and
fort> At itis my. It follows that at the momerit the gravitational field at a
point P at a distancer>c.t is proportional tomy, and at a point at a distance
<cC.(t-4t) to my.

event, decreasingith an amount from the valuem, to the

During the periodt( t+4t) the gravitational field at a point at a distance

c.t changes from the situation where it is determimgenh, to the situation where
it is determined byny'. So, the conversion of rest mass of an objeotradiation

Is the cause of a kink in the gravitational fiefdlwat object, a kink that with the
speed of light - together with the emitted radiati propagates out of the object.

We can conclude that the conversion of (a parttb® rest mass of an object into
radiation goes along with the emission by that obg# a gravitational wave.

* negligible in first approximation
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The effect of the decrease - during the time irate{®, 4t) - of the rest mass of a

point mass on the magnitude of its g-filgl at the point P at a distanae is
shown in the plot of fig. 16.

(mo)

e
0
0
0
‘e
0

S S+ At
C

C

Fig 16

1. Until the momentt = E the effect of the conversion of rest mass into

radiation has not yet reachBd So, during the period)( E) the quantity of mass-

energy enclosed by an hypothetical sphere withusadcentered on the patrticle
is still my (the remaining part of the rest mass + all titgateon that during the
mentioned period has arisen from the conversiorestf mass). From the first
GEM equation it follows:

E, = —
9" 4mng.r?

2.From the moment = E + At, the radiation generated by the conversion

of rest mass has left the space enclosed by thattgfical sphere with radius
that from that moment only contains the remainiegf massn,’. From the first
GEM equation it follows:

L
9" 4mny.r2
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3. During the time intervalg(,g + At), the mass-energy enclosed by the
hypothetical sphere with radiugs decreasing (not necessary linearly) because
mass-energy flows out in the form of radiation., @aring that period, atP is
decreasing.

8.4 ON THE DETECTION OF GRAVITATIONAL WAVES USING AN
INTERFEROMETER

Let x andy be the directions of the armg &nd L, of an interferometer, and
let z be the direction perpendicular to the plane defingthe arms. We consider

the (optimized) situation where a uniform planevgedional wave Eg,ﬁg) of
sinusoidal form is travelling in the-direction. We assume that the gravitational
field E, is in thex-direction and that the gravitational inductiBp is in they-
direction. If Euax is the amplitude of the gravitational field, thamaccording to
GEM - E,is given in magnitude byE, = Eyx.sin(wt — kz) with k =

W . = .. D @

o and the magnitude @&, is given byB, = -

When that gravitational wave is falling on the @aof the interferometer, the

gravitational fieldﬁg - being in the direction of i- will induce a longitudinal

mechanical wave in the tube of the armvihat will result in a (very slight)
oscillation of the mirror at the end. The mirroitlee end of the armolwill not

react onﬁg because that field is perpendicular tg LSo, the effective length

of the light beam that is travelling through Will differ (in the manner of an
oscillation) from the effective length of the lighéam that is travelling through
L., and the detector will record that the outgoind egflected beams are out of
phase. It is clear that this can be generalizedthatiwve can conclude that,
according to GEM ,the interferometer wilacts on a gravitational wave.

8.5 THE ENERGY RADIATED BY A HARMONICALLY OSCILLAT ING
PARTICLE

8.5.1 Poynting’s theorem

In free space a gravitational field is completedficed by the vectoral functions
E,(x,y,z;t) and By(x,y,zt). It can be show that the spatial areds
enclosed by the surfa& at the momernt- contains an amount of energy given

by the expression:
_ ([ mo-E5  Bg
u_fﬂG( LS.V
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The rate at which the energy escapes ftors:

oU ﬂf P aEg+1 5 0B, w
ot V(m" 99t vy 9 ot )

According to the third law of GEM:

tE, = 08,
ro g = ot
and according to the fourth law:
B oE
g g
t—=1nyg.——
ro Vo To-"5¢

S

O.
ou B 5 o B E,xB
——=jff(—g.rotEg—Eg.rot—g).dV=]ff div(—L~—2) .dv
Jt ¢ Vo Vo G Vo

By application of the theorem of Ostrogradsky /. divF.dV = ¢f F. ds, we
can rewrite this as:

oU E xB
__=#u_d—§

from which we can conclude that the expression

dS

Eg XBg —
Vo

defines the rate at which energy flows in the s@&fslke positive normal through
the surface elemenSatP .

So, the density of the energy flow at P is:

This vectoral quantity is called the “Poyntingisctor”. It is represented bﬁ:



The amount of energy transported through the serdéEmentSin the sense of
the positive normal during the time intendtis:

E XBgd_gdt

dUu =
Vo

8.5.2 The energy radiated by a harmonically oscdting particle — gravitons

In 88.2 it is shown that an harmonically oscillgtipoint massn radiates a
gravitomagnetic wave that at a far pdiis defined by (see fig 13):

Vo-m.w.V.sin 6

E =Eg1c.€1c= .sin(wt — kr).e,,

Amtr

_Voom.w.V.sin® R
B =By, €, = Amer .sin(wt — kr). e,

The instantaneous value of Poynting’s vectd? et

vo.m2. w2.V2.sin? 0
16.1m2%.c.r?

P= .sin*(wt — kr).é,

The amount of energy that, during one period flows through the surface
elementdSthat atP is perpendicular to the direction of the movemaftthe
informatons, is:

T Vo.m?2. w2 V2.sin?0 T
dUu =f P.dt.dS = =.dS
0

16.m2%.c.r? 2

And, withw = ZTH = 2.T.V:

vo.m2.V2.sin?0 dS
dUu = Vo—
8¢ r?
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ds : . . -

= d() is the solid angle under whiaSis “seen” from the origin. So, the
oscillating mass radiates per unit of solid angléhie directiorg, per period, an
amount of energyu,,:

Vo.m2.V2.sin% 0
Uy = ac vV (D)

This quantity is greatest in the direction perpeualdir to the movement of the
mass § = 90°) and it is proportional to the frequency of theveathus
proportional to the frequency at which the masssisllating.

We posit that the energy radiated by an oscillagpognt mass travels through

space in the form of particle-like packets of gyercalled “gravitons” and that
the energyl, transported by a graviton is proportional to threduency of the

oscillator, so:
Ug =R.v (2
h’ plays the role of Planck’s constant in electromégne
A graviton can be understood as an informatiorsfrarting a quantum of energy.
From (1) and (2), it follows that the number of\gtans emitted per period and

per unit of solid angle in the directiah by an oscillating point massis:

N o Mo _ Vo.m2.V?.sin* 6
92 "y T 8.h'.c

what is independent of the duration of a period.

If we assume that the number of gravitons and timber of photons emitted by
an oscillating charged particle (e. g. an electrarg of the same order of
magnitude, it turns out that the valuehdfdepends on the nature of the emitter
and that the energy of a graviton is many ordemlsmthan that of a photdfi.

8.6 CONCLUSION

The existence of gravitational waves is embeddethenGEM description of
gravity. According to the theory of informatonsgeavitational wave is the
macroscopic manifestation of the fact that theiritraf informatons emitted by
an oscillating source and travelling with the speglight in a certain direction is
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a spatial sequence of informatons whose charaiitedagle is harmonically

fluctuating along the “train” what implies that tkemponent of their g-index
perpendicular to their velociyand thei-index fluctuate harmonically in space.
Gravitational waves transport gravitational energgcause some of the
informatons that constitute the “train” are casi@f energy. They are called
gravitons. However, the energy quantum carried lgraviton is small in such a
way that it is very difficult to give experimentidence of its existence.
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APPENDIX 1

THE GRAVITATIONAL FIELD OF AN OBJECT
MOVING WITH CONSTANT VELOCITY AND THE
GEM EQUATIONS

In fig. A-1 we consider the gravitational field @particle with rest mass, that
is moving with constant velocity = v.é, along theZ-axis of an inertial
reference fram®. At the moment when the particle passes at thero@gwe
sett = 0.

174

Fig. A-1

According to 84.5 the gravitational field of thaarpcle atP is completely
defined, in spherical coordinates{, ¢), by:

Eg — N. —)g - _ 0 ) ﬁ .é)r
4mnor? 2 sin? §\s
(1 —p=.sin*0)2

Vo.m() 1_ﬂ2

. -
3.v.sm9.e(p

§g = Tl§ﬁ = — . 3
(1 — B2.sin? 0)2

4mr?
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We will verify that E,, B,) satisfy the Maxwell-Heaviside equations at an
arbitrary pointP:

1. divE; =0 2. divB, =0
, 9B, L 1 0E,
3. T'OtEg = _W 4, T'Oth = C_ZW
1. divE, =0
From mathematics we know that:
A O (sind.E.p)+ 9Eqe
v g_rz'ar(r Eqr) r.sine'ae(sm Ego) r.sin@  0¢
With
my 1-p?
Egr = _4nn 7 ' 3 and Egp=Ez, =0
0" (1 —B2.sin?0)z

We find: divE, = 0

2. ding =0

One can prove this in the same waylas

From mathematics we know that:

0 . 0Eg0| .
EQ(Eg(p.sm H) —ﬁ .6y

rotE, = N
g r.sin 0
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1 1 O0E d R
+;! gr—g(r.Eg(p)].eg

sin @ dg
1 a aEgT -
o ar (o) _6_9] o

With:

m 1—p? v?

Eg = — 0 . p 55 Egp= Egp, = 0 and B2 = —1,.v,.v?
4T (1 _ p2.sin 0)2 ¢

We find:

S Vom 1— p?

rotE, =3 4317”;)' £ z.v%.sinf.cos 0.é, (1)

(1 — B2.sin? 6)2

0B,
Next we calculateg.

Taking into account that from the kinematics bé particle along th&-axis, it
follows that:

or 00 v.sind
— = —v.cos 0 and — =
ot ot r
We find:
0B, Vom 1— B2
g - _ o't 2 . -
T 3 yp— z.vo.sinf.cos 0.e, (2)

(1 — B2.sin? 6)2

From (1) and (2) it follows:

. 9B
_ g
rotEg = ——=

dt

— 1 oF
4 rotB, ==.—2
9 ¢z’ ot

One can prove this in the same wayas
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APPENDIX 2

THE GEM EQUATIONS ARE MATHEMATICALLY
CONSISTENT

At a pointP of a gravitational field - wherg; is the mass density afigl IS the

density of the mass flow E, and B, must obey to the GEM equations (the
Maxwell-Heaviside equations):

1. divﬁg = _Pe
No
2. ding =0
3. rotE, = 98,
. TOtE; = 5t
L 10E, N
4., T'Oth = ;W_ VO']G

1
And:ng.vVy = =

We will prove that these equations are mathemayicainsistent.

1 THE CASE OF AN OBJECT WITH INVARIABLE REST MASS

Becausediv(rotF) = 0, it follows from (4) that:

1 a I .7 !
;E(dlvEg) —Vo.div]g =0 (4)

Substituting (1) in (4’) gives:
1 dpg >

1
c2no

And with

= Vv,, we obtain from (4):
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9
% +div; =0 (4"

(4”) is nothing else but the expression of the tdwnass conservation. Indeed:

- The rate at which mass is flowing out farolosed surfacs is:

$.J6-45  (A)

- The rate of the decrease of the mass enclos&ldfV is the volume

enclosed b$):
gl e = (-5 @

Because of the law of mass conservation=3), so

#JGdS—jff(— Poyav (5

Ostrogradsky’s theorem (divergence theorsitajes that
$$, F.dS=[f[ divF.dv

Substituting in (5) gives:

[[[aiTeav = [f] 225000

It follows:
- dpc
dlU]G = _W
Or:
0
% + dw]G =0

We conclude that - in a system with invariable reass - the GEM equations of
the gravitational field are in line with the law mass conservation.
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2. THE CASE OF AN OBJECT WITH VARIABLE REST MASS

Let us consider - relative to an inertial refereffigene - an object with rest
massm, that - due to intern instability - during theripe (0, 4t) emits EM
radiation. This implies that that object duringpat time interval is
emitting electromagnetic enerdyem carried by photons (+ gravitomagnetic
energy Ucgem carried by gravitons) that propagate with the spe=fd
light. Because of that event, from the moment4t the rest mass of the particle

. . Ugn+(U
is decreased with an amout€ X YeEM) 44 the valuem.

Cc
Consider the surfacgenclosing the object in whole or in parV i¢ the volume
enclosed byy). Ata momenO <t < At:

- The rate of the decrease of the enclosasbns:

5[] ey = [[[ (<%5)-ar @

- J., the density of the mass flow out from the enetbgolume at a poirR
of Shas two components:

1f61 describing the outflow of massive mass;

ZfGZ describing the outflow of mass in the form of igye If we
S
o2

(o

represent the density of #reergy flow bys: sz =
So:

-

- - > - S
Je =Je1 tJe2 =Je1 +c_2

and the rate at which mass-energywifig out from the closed surface
S is:
> =
¢b.Jc.dS  (B)

(A) = (B) because of the law of mass-energy corsgam, so

j;ﬁsfa.d_’h [ V(—%G).dv

and

* negligible in first approximation
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- dpec dpe -
div]; = BT or B + div]; =0

We conclude that in the case of a system with bkrigest mass, the GEM
equations of the gravitational field are in lineithv the law of mass-energy
conservation.



88
APPENDIX 3

THE THEORY OF INFORMATONS AND
ELECTROMAGNETISM

The theory of informatons unifies gravitation wigkectromagnetism. Indeed,
with the theory of informatons it is also possitdeexplain the phenomena and
the laws of electromagneti§ii?lBl. |t is sufficient to add the following rule to
the postulate of the emission of informatons:

C. Informatons emitted by an electrically chargedtigée (a “point charge” q)
at rest in an inertial reference frame, carry attridute referring to the charge
of the emitter, namely the e-index. e-indices repgesented as, and defined

by:

1. The e-indices are radial relative to the positidntloe emitter. They are
centrifugal when the emitter carries a positive e (g = +Q) and
centripetal when the charge of the emitter is niegatg = -Q).

2. g, the magnitude of an e-index depends on Q/mtuege per unit of mass
of the emitter. Itis defined by:

1
Se = :

K. ¢

= 8,32.10‘40.2N.m2.s. c 1
m

SEES

wheres, = 8,85.10712F /m is the permittivity constant

Consequently, the informatons emitted by a moviamtpchargeq have at the
fixed pointP - defined by the time dependant position veétdsee fig 5) - two
attributes that are in relation with the fact that amovingpointcharge namely
their e-indexs, and their b-inde%,:

1
K.¢g

-

3 =1
e m'

1 7
r

g =
T om'K.gy

Macroscopically, these attributes manifest theneselatP as, respectively the
electric field strength(thee-field) E and thanagnetic inductioritheb-inductior)
B.
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